Menu Close

Category: None

how-to-solve-find-inf-and-sup-of-A-1-A-m-n-4n-m-m-n-N-2-A-mn-4m-2-n-2-m-Z-n-N-3-A-m-m-n-m-Z-n-N-

Question Number 78425 by arkanmath7@gmail.com last updated on 17/Jan/20 $${how}\:{to}\:{solve} \\ $$$${find}\:{inf}\:{and}\:{sup}\:{of}\:{A} \\ $$$$ \\ $$$$\mathrm{1}.\:{A}=\left\{\frac{{m}}{{n}}+\frac{\mathrm{4}{n}}{{m}}\:\:\:{m},{n}\:\in{N}\right\} \\ $$$$\mathrm{2}.\:{A}=\left\{\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} \:+\:{n}^{\mathrm{2}} }\:\:{m}\in{Z},{n}\:\in{N}\right\} \\ $$$$\mathrm{3}.\:{A}=\left\{\frac{{m}}{\mid{m}\mid\:+\:{n}}\:\:{m}\in{Z},{n}\:\in{N}\right\} \\ $$$$ \\…

Question-143904

Question Number 143904 by nadovic last updated on 19/Jun/21 Answered by Dwaipayan Shikari last updated on 19/Jun/21 $$\frac{\mathrm{1}}{\:\sqrt{\pi}}\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\mathrm{1}\:\:{e}^{\pi{i}} =−\mathrm{1} \\ $$$${p}=\mathrm{2}…

the-LCM-and-HCF-of-30-and-a-certain-number-are-150-and-5-respectively-find-the-number-please-help-

Question Number 12830 by chux last updated on 03/May/17 $$\mathrm{the}\:\mathrm{LCM}\:\mathrm{and}\:\mathrm{HCF}\:\mathrm{of}\:\mathrm{30}\:\mathrm{and}\:\mathrm{a}\: \\ $$$$\mathrm{certain}\:\mathrm{number}\:\mathrm{are}\:\mathrm{150}\:\mathrm{and}\:\mathrm{5}\: \\ $$$$\mathrm{respectively}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$ Answered by RasheedSoomro…

Find-1-cos-2-x-1-tanx-2-dx-

Question Number 78352 by Khyati last updated on 16/Jan/20 $${Find}\:\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−{tanx}\right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by jagoll last updated on 17/Jan/20 $$\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} {x}\:{dx}}{\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\mathrm{2}} }\:=\:−\int\:\frac{{d}\left(\mathrm{1}−\mathrm{tan}\:{x}\right)}{\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\mathrm{2}} }…

Question-78309

Question Number 78309 by otchereabdullai@gmail.com last updated on 15/Jan/20 Answered by mind is power last updated on 15/Jan/20 $$\angle\mathrm{BAO}=\angle\mathrm{OBA}=\mathrm{90}−\mathrm{x} \\ $$$$\angle\mathrm{BOA}=\mathrm{180}−\angle\mathrm{ABO}−\angle\mathrm{OAB}=\mathrm{180}−\left(\mathrm{90}−\mathrm{x}+\mathrm{90}−\mathrm{x}\right)=\mathrm{2x} \\ $$$$ \\ $$…

Question-143827

Question Number 143827 by 0731619 last updated on 18/Jun/21 Answered by MJS_new last updated on 18/Jun/21 $$\mathrm{draw}\:\mathrm{it}:\:\mathrm{2}\:\mathrm{half}−\mathrm{parabolas}.\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution} \\ $$$$\mathrm{is}\:{x}=\mathrm{4}\wedge{t}=\mathrm{1} \\ $$ Terms of Service Privacy…