Question Number 143810 by Jamshidbek last updated on 18/Jun/21 $$\:\:\:\:\int\mathrm{cos}\left(\mathrm{cosx}\right)\mathrm{dx}=? \\ $$ Answered by mathmax by abdo last updated on 18/Jun/21 $$\int\:\mathrm{cos}\left(\mathrm{cosx}\right)\mathrm{dx}\:=\int\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{cos}^{\mathrm{2n}}…
Question Number 12728 by geovane10math last updated on 30/Apr/17 $${x}^{{n}} \:+\:{ca}^{{x}} \:=\:{k}\:\:\:\:\:\:\:\:\:\:{c},\:{a},\:{n},\:{k}\:\mathrm{constant} \\ $$$${x}\:=\:{F}\left({n},\:{a},\:{c},\:{k}\right)\:\:\left(\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{make}\:{x}^{{n}} \:=\:{k}\:−\:\theta\:\mathrm{and}\:{ca}^{{x}} \:=\:\theta, \\ $$$$\mathrm{but},\:\mathrm{if}\:\mathrm{someone}\:\mathrm{can}\:\mathrm{help},\:{please}! \\ $$ Terms…
Question Number 143786 by mohammad17 last updated on 18/Jun/21 $$\int_{−\infty} ^{\:\infty} \frac{{e}^{{iax}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:{how}\:{can}\:{it}\:{solve}\:{this} \\ $$ Commented by mohammad17 last updated on 18/Jun/21 $$????? \\…
Question Number 12699 by chux last updated on 29/Apr/17 $$\mathrm{A}\:\mathrm{man}\:\mathrm{can}\:\mathrm{row}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{at}\:\mathrm{4km}/\mathrm{hr} \\ $$$$\mathrm{in}\:\mathrm{still}\:\mathrm{water}.\mathrm{He}\:\mathrm{rows}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{2km} \\ $$$$\mathrm{upstream}\:\mathrm{and}\:\mathrm{2km}\:\mathrm{back}\:\mathrm{to}\:\mathrm{his} \\ $$$$\mathrm{starting}\:\mathrm{place}\:\mathrm{in}\:\mathrm{2hours}.\mathrm{How}\:\mathrm{fast} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{stream}\:\mathrm{moving}? \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help} \\…
Question Number 143764 by jahar last updated on 18/Jun/21 $${can}\:{anyone}\:{tell}\:{me},{how}\:{can}\:{I} \\ $$$${bring}\:{everything}\:{in}\:{this}\:{app}\:{to} \\ $$$${the}\:{new}\:{phone}. \\ $$$${And}\:{after}\:{bringing}\:{it}\:{to}\:{the}\:{new} \\ $$$${phone},\:{I}\:{will}\:{be}\:{able}\:{to}\:{edit}\:{everything} \\ $$$${again}. \\ $$ Answered by TheHoneyCat…
Question Number 143763 by jahar last updated on 18/Jun/21 $$ \: \: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \:…
Question Number 143751 by help last updated on 17/Jun/21 Answered by TheHoneyCat last updated on 17/Jun/21 $$\mathrm{let}\:{R}_{\mathrm{0}} ={r} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{right}\:{R}_{{ijk}} \:\mathrm{for}\:\mathrm{the}\:\mathrm{total}\:\mathrm{resistance}\:\mathrm{of}\:{i},{j}\:\mathrm{and}\:{k}… \\ $$$$ \\ $$$${R}_{\mathrm{34}}…
Question Number 143708 by ZiYangLee last updated on 17/Jun/21 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}^{} }+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{3}^{\mathrm{3}} }{\mathrm{4}^{\mathrm{3}} }+\frac{\mathrm{3}^{\mathrm{4}} }{\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{3}^{\mathrm{5}} }{\mathrm{4}^{\mathrm{5}} }+\ldots=\mathrm{3} \\ $$ Answered by…
Question Number 143701 by help last updated on 17/Jun/21 Commented by Eric002 last updated on 17/Jun/21 $${can}\:{you}\:{put}\:{a}\:{better}\:{picture}\: \\ $$ Answered by TheHoneyCat last updated on…
Question Number 143688 by mohammad17 last updated on 17/Jun/21 Commented by mohammad17 last updated on 17/Jun/21 $${help}\:{me}\:{sir} \\ $$ Commented by mohammad17 last updated on…