Question Number 143671 by lapache last updated on 16/Jun/21 Commented by justtry last updated on 17/Jun/21 Commented by justtry last updated on 17/Jun/21 Terms of…
Question Number 143653 by mim24 last updated on 16/Jun/21 Answered by ajfour last updated on 16/Jun/21 $${x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{2}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} =−\mathrm{2}\sqrt{\mathrm{3}} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}}…
Question Number 143650 by Rankut last updated on 16/Jun/21 $${If}\:\:{the}\:{function}\:{f}\:{and}\:{g}\:{are}\:{defined} \\ $$$${on}\:{the}\:{set}\:{of}\:{real}\:{numbers},{are}\:{such} \\ $$$${that}\:\boldsymbol{{gof}}\left(\boldsymbol{{x}}\right)=\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{5}}{\mathrm{3}\boldsymbol{{x}}+\mathrm{7}}\:\:\:{and}\: \\ $$$$\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\frac{\mathrm{3}\boldsymbol{{x}}+\mathrm{2}}{\boldsymbol{{x}}−\mathrm{5}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{expression}}\:\boldsymbol{\mathrm{for}}\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$ Answered by ajfour last updated…
Question Number 143633 by Niiicooooo last updated on 16/Jun/21 Answered by mathmax by abdo last updated on 16/Jun/21 $$\Gamma\left(\mathrm{n}\right)\sim\mathrm{n}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\:\mathrm{and}\:\Gamma\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\sim\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \sqrt{\mathrm{2}\pi\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Rightarrow} \\ $$$$\frac{\Gamma\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{n}\right)}.\sqrt{\mathrm{n}}\sim\frac{\left(\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}−\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 78099 by jagoll last updated on 14/Jan/20 $${anyone}\:{have}\:{problems}\:{about} \\ $$$${limits}\:{and}\:{derivatives}?\:{i}\:{need}\:{it} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143635 by SOMEDAVONG last updated on 16/Jun/21 Answered by TheHoneyCat last updated on 16/Jun/21 $$\mathrm{let}\:{x}\in\mathbb{C}\:_{{or}\:\mathbb{R}\:{if}\:{you}\:{want}} \\ $$$$\mathrm{let}\:{s}=\mathrm{sin}\left({x}\right)\:\mathrm{and}\:{c}=\mathrm{cos}\left({x}\right) \\ $$$$ \\ $$$${s}^{\mathrm{4}} +{c}^{\mathrm{4}} +{s}^{\mathrm{2}}…
Question Number 143630 by Eric002 last updated on 16/Jun/21 $${prove}\:{that}\:{if}\:{a}\:{and}\:{c}\:{are}\:{odd}\:{integers} \\ $$$${then}\:{ab}+{bc}\:{is}\:{even}\:{for}\:{every}\:{integer}\:{b}? \\ $$ Commented by mr W last updated on 16/Jun/21 $${yes}. \\ $$$${a},{c}={add}…
Question Number 143624 by mohammad17 last updated on 16/Jun/21 $$\int_{\mathrm{0}} ^{\:\infty} {z}^{\mathrm{2}} {e}^{\frac{\mathrm{1}}{{z}}} {dz} \\ $$ Answered by Olaf_Thorendsen last updated on 16/Jun/21 $$\Omega\:=\:\int_{\mathrm{0}} ^{\infty}…
Question Number 12540 by Mr Chheang Chantria last updated on 25/Apr/17 $$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\sqrt{\boldsymbol{{x}}}=\sqrt{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 78073 by jagoll last updated on 14/Jan/20 $${anyone}\:{have}\:{Lambert}\:{W}\:{function} \\ $$$${formula}.\:{please}\:{post}\:{in}\:{forum} \\ $$ Commented by mr W last updated on 14/Jan/20 $${google},\:{wikipedia},\:{etc}. \\ $$…