Question Number 143542 by tugu last updated on 15/Jun/21 $${calculate}\:{the}\:{polar}\:{integral}\:{that} \\ $$$$\:{give}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bunded}\:{by}\:{the}\:{curves}\: \\ $$$$ \\ $$$${r}=\mathrm{2}\:,{r}=\mathrm{4}{cos}\theta\:{and}\:,{r}\:{cos}\theta=\mathrm{3}\: \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 143535 by 0731619 last updated on 15/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143523 by lapache last updated on 15/Jun/21 $${Determiner}\:{l}'{origine}\:{de}\:{laplace} \\ $$$$\mathrm{1}−{F}\left({p}\right)=\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$ Answered by Dwaipayan Shikari last updated on 15/Jun/21 $${F}\left({p}\right)=\mathrm{1}−\frac{{p}}{\left({p}+\mathrm{2}\right)^{\mathrm{2}} }…
Question Number 143516 by mathdanisur last updated on 15/Jun/21 Commented by amin96 last updated on 15/Jun/21 $$? \\ $$ Answered by MJS_new last updated on…
Question Number 143519 by tugu last updated on 15/Jun/21 $$ \\ $$$${The}\:{first}\:{two}\:{terms}\:{of}\:{the}\:\left\{{a}_{{n}} \right\}\:{series}\:\:\:{are}\:{defind}\:{as}\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \:\:{for}\:{the}\:{general}\:{term} \\ $$$$\:{a}_{\mathrm{1}} =\mathrm{5},\:{a}_{\mathrm{2}} =\mathrm{8}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$$${since}\:{the}\:{L}={li}\underset{{n}\rightarrow\infty} {{m}}\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:\:{what}\:{is}\:{the}\:{value}\:{of}\:{L}…
Question Number 12435 by Mr Chheang Chantria last updated on 22/Apr/17 $$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\:\:\boldsymbol{{X}}_{\mathrm{4}} −\mathrm{3}\boldsymbol{{X}}_{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$ Commented by mrW1 last updated on 22/Apr/17…
Question Number 12432 by mrW1 last updated on 22/Apr/17 $${To}\:{Tinku}\:{Tara}: \\ $$$${it}\:{is}\:{not}\:{possible}\:{to}\:{post}\:{long}\:{and}\:{narrow} \\ $$$${images},\:{since}\:{the}\:{button}\:'{Submit}'\:{is} \\ $$$${not}\:{visible}.\:{Can}\:{you}\:{please}\:{solve}\:{this}\:{problem}? \\ $$ Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Apr/17…
Question Number 143495 by lapache last updated on 15/Jun/21 $${On}\:{definit}\:{la}\:{fonction}\: \\ $$$$\mathscr{L}\left({f}\left({t}\right)\right)\left({p}\right)=\int_{\mathrm{0}} ^{+\infty} {f}\left({t}\right){e}^{−{pt}} {dt} \\ $$$${Calculer}\:\mathscr{L}\left(\left(\frac{{t}^{{n}} }{{n}!}\right)\right)\left({p}\right) \\ $$ Answered by Ar Brandon last…
Question Number 143491 by SOMEDAVONG last updated on 15/Jun/21 $$\mathrm{Find}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\mathrm{u}_{\mathrm{n}} \right),\mathrm{If}\:\begin{cases}{\mathrm{u}_{\mathrm{0}} =\mathrm{1},\mathrm{n}=\mathrm{1},\mathrm{2},\mathrm{3},…..}\\{\mathrm{u}_{\mathrm{n}} =\:\frac{\mathrm{2018}}{\mathrm{2019}}\mathrm{u}_{\mathrm{n}−\mathrm{1}} +\:\frac{\mathrm{1}}{\left(\mathrm{u}_{\mathrm{n}−\mathrm{1}} \right)^{\mathrm{2018}} }}\end{cases} \\ $$ Commented by mr W last updated…
Question Number 143481 by lapache last updated on 15/Jun/21 $$\mathrm{1}−{Montrer}\:{par}\:{recurrence}\:{que}\:{la}\:{transformee}\:{deLaplace}\:{suivante} \\ $$$$\mathscr{L}\left({f}^{{n}} \left({t}\right)\right)\left({p}\right)={p}^{{n}} \mathscr{L}\left({f}\left({t}\right)\left({p}\right)−{p}^{{n}−\mathrm{1}} {f}\left(\mathrm{0}^{+} \right)−{p}^{{n}−\mathrm{2}} {f}\:'\left(\mathrm{0}^{+} \right)−…….−{f}^{\left({n}−\mathrm{1}\right)} \left(\mathrm{0}^{+} \right)\right. \\ $$$$ \\ $$$$\mathrm{2}−{Calaculer}\:{partir}\:{de}\:\mathscr{L}\left({sint}\right)\left({p}\right)\:{la}\:{transforme}\:\mathscr{L}\left(\frac{{sint}}{{t}}\right)\left({p}\right) \\…