Menu Close

Category: None

calculate-the-polar-integral-that-give-the-area-of-the-region-bunded-by-the-curves-r-2-r-4cos-and-r-cos-3-

Question Number 143542 by tugu last updated on 15/Jun/21 $${calculate}\:{the}\:{polar}\:{integral}\:{that} \\ $$$$\:{give}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bunded}\:{by}\:{the}\:{curves}\: \\ $$$$ \\ $$$${r}=\mathrm{2}\:,{r}=\mathrm{4}{cos}\theta\:{and}\:,{r}\:{cos}\theta=\mathrm{3}\: \\ $$$$ \\ $$ Terms of Service Privacy Policy…

The-first-two-terms-of-the-a-n-series-are-defind-as-a-n-a-n-1-a-n-2-for-the-general-term-a-1-5-a-2-8-and-n-3-since-the-L-lim-n-a-n-1-a-n-what-is-the-value-of-L-

Question Number 143519 by tugu last updated on 15/Jun/21 $$ \\ $$$${The}\:{first}\:{two}\:{terms}\:{of}\:{the}\:\left\{{a}_{{n}} \right\}\:{series}\:\:\:{are}\:{defind}\:{as}\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \:\:{for}\:{the}\:{general}\:{term} \\ $$$$\:{a}_{\mathrm{1}} =\mathrm{5},\:{a}_{\mathrm{2}} =\mathrm{8}\:{and}\:{n}\geqslant\mathrm{3}\:. \\ $$$${since}\:{the}\:{L}={li}\underset{{n}\rightarrow\infty} {{m}}\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:\:{what}\:{is}\:{the}\:{value}\:{of}\:{L}…

To-Tinku-Tara-it-is-not-possible-to-post-long-and-narrow-images-since-the-button-Submit-is-not-visible-Can-you-please-solve-this-problem-

Question Number 12432 by mrW1 last updated on 22/Apr/17 $${To}\:{Tinku}\:{Tara}: \\ $$$${it}\:{is}\:{not}\:{possible}\:{to}\:{post}\:{long}\:{and}\:{narrow} \\ $$$${images},\:{since}\:{the}\:{button}\:'{Submit}'\:{is} \\ $$$${not}\:{visible}.\:{Can}\:{you}\:{please}\:{solve}\:{this}\:{problem}? \\ $$ Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Apr/17…

Find-lim-n-u-n-If-u-0-1-n-1-2-3-u-n-2018-2019-u-n-1-1-u-n-1-2018-

Question Number 143491 by SOMEDAVONG last updated on 15/Jun/21 $$\mathrm{Find}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\mathrm{u}_{\mathrm{n}} \right),\mathrm{If}\:\begin{cases}{\mathrm{u}_{\mathrm{0}} =\mathrm{1},\mathrm{n}=\mathrm{1},\mathrm{2},\mathrm{3},…..}\\{\mathrm{u}_{\mathrm{n}} =\:\frac{\mathrm{2018}}{\mathrm{2019}}\mathrm{u}_{\mathrm{n}−\mathrm{1}} +\:\frac{\mathrm{1}}{\left(\mathrm{u}_{\mathrm{n}−\mathrm{1}} \right)^{\mathrm{2018}} }}\end{cases} \\ $$ Commented by mr W last updated…

1-Montrer-par-recurrence-que-la-transformee-deLaplace-suivante-L-f-n-t-p-p-n-L-f-t-p-p-n-1-f-0-p-n-2-f-0-f-n-1-0-2-Calaculer-partir-de-L-sint-p-la-transforme-L-

Question Number 143481 by lapache last updated on 15/Jun/21 $$\mathrm{1}−{Montrer}\:{par}\:{recurrence}\:{que}\:{la}\:{transformee}\:{deLaplace}\:{suivante} \\ $$$$\mathscr{L}\left({f}^{{n}} \left({t}\right)\right)\left({p}\right)={p}^{{n}} \mathscr{L}\left({f}\left({t}\right)\left({p}\right)−{p}^{{n}−\mathrm{1}} {f}\left(\mathrm{0}^{+} \right)−{p}^{{n}−\mathrm{2}} {f}\:'\left(\mathrm{0}^{+} \right)−…….−{f}^{\left({n}−\mathrm{1}\right)} \left(\mathrm{0}^{+} \right)\right. \\ $$$$ \\ $$$$\mathrm{2}−{Calaculer}\:{partir}\:{de}\:\mathscr{L}\left({sint}\right)\left({p}\right)\:{la}\:{transforme}\:\mathscr{L}\left(\frac{{sint}}{{t}}\right)\left({p}\right) \\…