Menu Close

Category: None

Montrer-que-n-n-1-

Question Number 143296 by lapache last updated on 12/Jun/21 $${Montrer}\:{que} \\ $$$$\Gamma\left({n}\right)=\left({n}−\mathrm{1}\right)! \\ $$$$ \\ $$ Answered by Olaf_Thorendsen last updated on 12/Jun/21 $$\mathrm{By}\:\mathrm{definition}\:\Gamma\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\infty}…

Prove-that-x-1-2-1-x-2-x-

Question Number 12173 by Mr Chheang Chantria last updated on 15/Apr/17 $$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\:\forall\boldsymbol{{x}}\in\left[\mathrm{1},\mathrm{2}\right] \\ $$$$\Rightarrow\:\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} \:\leqslant\:\boldsymbol{{x}} \\ $$ Answered by ajfour last updated on 18/Apr/17 $${x}\geqslant\mathrm{1}…

If-z-cos-i-sin-by-expand-z-1-z-4-z-1-z-4-or-other-method-prove-128-sin-4-cos-4-cos-8-4cos-4-3-

Question Number 143222 by ZiYangLee last updated on 11/Jun/21 $$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{by}\:\mathrm{expand} \\ $$$$\left({z}+\frac{\mathrm{1}}{{z}}\right)^{\mathrm{4}} \left({z}−\frac{\mathrm{1}}{{z}}\right)^{\mathrm{4}} \mathrm{or}\:\mathrm{other}\:\mathrm{method}, \\ $$$$\mathrm{prove}\:\mathrm{128}\:\mathrm{sin}^{\mathrm{4}} \theta\mathrm{cos}^{\mathrm{4}} \theta=\mathrm{cos}\:\mathrm{8}\theta−\mathrm{4cos}\:\mathrm{4}\theta+\mathrm{3}. \\ $$ Answered by Olaf_Thorendsen last updated…

how-3-14-and-what-it-mean-

Question Number 77666 by td2020 last updated on 08/Jan/20 $${how}\:\Pi=\mathrm{3}.\mathrm{14}\:{and}\:{what}\:{it}\:{mean}? \\ $$ Commented by MJS last updated on 08/Jan/20 $$\mathrm{seriously}? \\ $$$$\mathrm{have}\:\mathrm{you}\:\mathrm{never}\:\mathrm{heard}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}? \\ $$$$…\mathrm{do}\:\mathrm{you}\:\mathrm{know}\:\mathrm{how}\:\mathrm{the}\:\mathrm{diagonal}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square} \\…

Suppose-z-50-z-25-m-0-where-z-1-i-2-find-the-value-of-m-

Question Number 143194 by ZiYangLee last updated on 11/Jun/21 $$\mathrm{Suppose}\:{z}^{\mathrm{50}} +{z}^{\mathrm{25}} +{m}=\mathrm{0},\:\mathrm{where}\:{z}=\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}. \\ $$ Answered by Olaf_Thorendsen last updated on 11/Jun/21 $${z}\:=\:\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \\…

Question-143191

Question Number 143191 by mohammad17 last updated on 11/Jun/21 Answered by mathmax by abdo last updated on 11/Jun/21 $$\int_{\mathrm{0}} ^{\mathrm{3}} \:\int_{\sqrt{\frac{\mathrm{x}}{\mathrm{3}}}} ^{\mathrm{1}} \:\left(\mathrm{y}^{\mathrm{3}} \:+\mathrm{1}\right)^{\mathrm{3}} \mathrm{dydx}\:=\int_{\mathrm{0}}…