Menu Close

Category: None

Question-142992

Question Number 142992 by otchereabdullai@gmail.com last updated on 08/Jun/21 Commented by otchereabdullai@gmail.com last updated on 08/Jun/21 $$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{understand}\:\mathrm{why}\:\mathrm{we}\: \\ $$$$\mathrm{have}\:\mathrm{S}=−\mathrm{20m}\:\mathrm{in}\:\mathrm{option}\:\left(\mathrm{b}\right) \\ $$ Commented by Olaf_Thorendsen last…

0-pi-2-ln-2-cos-x-dx-

Question Number 77464 by naka3546 last updated on 06/Jan/20 $$\underset{\:\:\mathrm{0}} {\int}\:\overset{\frac{\pi}{\mathrm{2}}} {\:}\mathrm{ln}\:\left(\mathrm{2}\:\mathrm{cos}\:{x}\right)\:{dx}\:\:=\:\:? \\ $$ Commented by kaivan.ahmadi last updated on 06/Jan/20 $${u}={ln}\left(\mathrm{2}{cosx}\right)\Rightarrow{du}=−{tgxdx} \\ $$$${dv}={dx}\Rightarrow{v}={x} \\…

Assuming-it-rained-at-a-constant-rate-and-the-rain-fell-at-angle-to-the-ground-see-diagram-determine-if-walking-or-running-causes-you-to-get-more-less-wet-or-of-it-makes-no-difference-for-1-

Question Number 11902 by FilupS last updated on 04/Apr/17 $$\mathrm{Assuming}\:\mathrm{it}\:\mathrm{rained}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{rate}, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{rain}\:\mathrm{fell}\:\mathrm{at}\:\mathrm{angle}\:\theta\:\mathrm{to}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\left(\mathrm{see}\:\mathrm{diagram}\right),\:\mathrm{determine}\:\mathrm{if}\:\mathrm{walking}\:\mathrm{or} \\ $$$$\mathrm{running}\:\mathrm{causes}\:\mathrm{you}\:\mathrm{to}\:\mathrm{get}\:\mathrm{more}/\mathrm{less}\:\mathrm{wet}, \\ $$$$\mathrm{or}\:\mathrm{of}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{difference}\:\mathrm{for}: \\ $$$$\: \\ $$$$\mathrm{1}.\:\:\:\theta=\mathrm{90}°\:\:\left(\mathrm{downwards}\right) \\ $$$$\mathrm{2}.\:\theta<\mathrm{90}°\:\:\left(\mathrm{the}\:\mathrm{rain}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{on}\:\mathrm{the}\right. \\…

f-x-3-x-gt-2-2x-x-2-f-2-1-ise-f-1-f-3-czm-f-x-3x-c-2-x-gt-2-x-2-c-1-x-2-f-2-x-2-c-1-dir-1-4-c-1-gt-c-1-3-1-2-3-c-2-gt-c-2-5-f-x-3x-5-x-gt-2

Question Number 11899 by ahmet last updated on 04/Apr/17 $${f}'\left({x}\right)=\left\{_{\mathrm{3}\:\:\:\:\:;{x}>\mathrm{2}} ^{\mathrm{2}{x}\:\:;\:{x}\leqslant\mathrm{2}} \right. \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{1}\:{ise}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{3}\right)=? \\ $$$${czm}\because\:{f}\left({x}\right)=\left\{_{\mathrm{3}{x}+{c}_{\mathrm{2}} \:;\:{x}>\mathrm{2}} ^{{x}^{\mathrm{2}} +{c}_{\mathrm{1}} \:;{x}\leqslant\mathrm{2}} \right. \\ $$$${f}\left(\mathrm{2}\right)={x}^{\mathrm{2}} +{c}_{\mathrm{1}} \:{dir}…

Question-142971

Question Number 142971 by 0731619 last updated on 08/Jun/21 Commented by wassel last updated on 11/Jun/21 $$\left(\sqrt{{x}}−\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} ={x}+\frac{\mathrm{1}}{{x}}−\mathrm{2}=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}=−\frac{\mathrm{3}}{\mathrm{2}}\:=\frac{\mathrm{3}}{\mathrm{2}}{i}^{\mathrm{2}} \\ $$$$\sqrt{{x}}−\frac{\mathrm{1}}{\:\sqrt{{x}}}=\pm{i}\sqrt{\frac{\mathrm{3}}{\mathrm{2}}\:\:}\: \\ $$ Answered by Rasheed.Sindhi…

0-0-5-1-x-3-1-3-dx-

Question Number 142945 by Rankut last updated on 07/Jun/21 $$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{5}} \sqrt[{\mathrm{3}}]{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{3}} }\boldsymbol{{dx}} \\ $$$$ \\ $$ Answered by mindispower last updated on 07/Jun/21 $$\left(\mathrm{1}+{y}\right)^{{a}}…

Lesson1-AM-GM-s-inequality-Cauchy-form-a-1-a-2-a-n-n-a-1-a-2-a-n-1-n-where-a-1-a-2-a-n-gt-0-Equal-at-a-1-a-2-a-n-e-g-1-Given-a-b-c-gt-0-prove-that-

Question Number 11862 by Mr Chheang Chantria last updated on 03/Apr/17 $$\boldsymbol{{Lesson}}\mathrm{1}.\:\boldsymbol{\mathrm{AM}}−\boldsymbol{\mathrm{GM}}\:'\:\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{inequality}}\:\left(\boldsymbol{\mathrm{Cauchy}}\right) \\ $$$$\boldsymbol{\mathrm{form}}\::\:\frac{\boldsymbol{{a}}_{\mathrm{1}} +\boldsymbol{{a}}_{\mathrm{2}} +…+\boldsymbol{{a}}_{\boldsymbol{{n}}} }{\boldsymbol{{n}}}\:\geqslant\:\sqrt[{\boldsymbol{{n}}}]{\boldsymbol{{a}}_{\mathrm{1}} \boldsymbol{{a}}_{\mathrm{2}} …\boldsymbol{{a}}_{\boldsymbol{{n}}} } \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{a}}_{\mathrm{1}} ,\boldsymbol{{a}}_{\mathrm{2}} ,….,\boldsymbol{{a}}_{\boldsymbol{{n}}} >\mathrm{0}…