Menu Close

Category: None

Find-the-equation-of-the-circle-having-2-2-as-its-centre-and-passing-through-3x-y-14-2x-5y-18-

Question Number 76860 by vishalbhardwaj last updated on 31/Dec/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{having} \\ $$$$\left(\mathrm{2},−\mathrm{2}\right)\:\mathrm{as}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{passing} \\ $$$$\mathrm{through}\:\mathrm{3x}+\mathrm{y}=\mathrm{14},\:\mathrm{2x}+\mathrm{5y}=\mathrm{18}\:?? \\ $$ Answered by john santu last updated on 31/Dec/19 $${r}\:=\:\sqrt{\:\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{2}}…

n-N-b-a-N-a-0-In-base-10-n-aabb-1-show-that-n-is-not-prime-2-Give-conditions-on-b-such-that-n-is-perfect-square-3-Determinate-n-such-that-n-is-a-perfect-square-

Question Number 142388 by mathocean1 last updated on 30/May/21 $$\mathrm{n}\:\in\:\mathbb{N},\:\mathrm{b},\:\mathrm{a}\:\in\:\mathbb{N}\:;\:\mathrm{a}\neq\mathrm{0}. \\ $$$$\mathrm{In}\:\mathrm{base}\:\mathrm{10};\:\mathrm{n}=\overline {\mathrm{aabb}}\: \\ $$$$\mathrm{1}.\:\mathrm{show}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{not}\:\mathrm{prime}. \\ $$$$\mathrm{2}.\:\mathrm{Give}\:\mathrm{conditions}\:\mathrm{on}\:\mathrm{b}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{n}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{3}.\:\mathrm{Determinate}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{perfect}\:\mathrm{square}. \\ $$…

ax-2-by-2-cz-2-r-2-Point-P-a-b-c-Point-Q-l-m-n-Both-points-lie-on-the-curve-what-is-the-shortest-path-from-point-P-to-Q-along-the-outside-of-the-curve-

Question Number 11309 by FilupS last updated on 20/Mar/17 $${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Point}\:{P}=\left({a},\:{b},\:{c}\right) \\ $$$$\mathrm{Point}\:{Q}=\left({l},\:{m},\:{n}\right) \\ $$$$\mathrm{Both}\:\mathrm{points}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{from}\:\mathrm{point}…

at-tinkutara-there-are-major-bugs-with-combining-brackets-e-g-typing-A-B-T-writing-A-then-changing-it-to-A-causes-odd-size-glitches-furthermore-while-typing-my-p

Question Number 11218 by FilupS last updated on 17/Mar/17 $$\mathrm{at}\:\mathrm{tinkutara} \\ $$$$\: \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{major}\:\mathrm{bugs}\:\mathrm{with}\:\mathrm{combining} \\ $$$$\mathrm{brackets}. \\ $$$$\: \\ $$$$\mathrm{e}.\mathrm{g}.\:\mathrm{typing}: \\ $$$$\mid{A}\rangle=\left(\mid{B}^{\ast} \rangle\right)^{\mathrm{T}} \\ $$$$\:…

e-i-i-N-e-i-is-a-basis-vector-A-C-n-A-i-N-e-i-A-i-A-1-A-2-A-n-A-B-B-T-A-B-

Question Number 11217 by FilupS last updated on 17/Mar/17 $$\exists{e}_{{i}} :{i}\in\mathbb{N}\:\:\:\:\:\:\:\:{e}_{{i}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{vector} \\ $$$$\boldsymbol{{A}}\in\mathbb{C}^{{n}} \\ $$$$\boldsymbol{{A}}=\underset{{i}\in\mathbb{N}} {\sum}{e}_{{i}} {A}_{{i}} =\begin{pmatrix}{{A}_{\mathrm{1}} }\\{{A}_{\mathrm{2}} }\\{\vdots}\\{{A}_{{n}} }\end{pmatrix}\:\:\:=\:\mid{A}\rangle \\ $$$$\langle{B}\mid=\left(\mid{B}^{\ast} \rangle\right)^{\mathrm{T}}…