Question Number 147569 by Sozan last updated on 21/Jul/21 $${find}\:{the}\:{taylor}\:{series}\:{of}\:{f}\left({z}\right)={sinz}\:,{z}=\frac{\pi}{\mathrm{4}}\:{in}\:{complex}\:{number} \\ $$ Answered by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{f}\left(\mathrm{z}\right)=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\frac{\pi}{\mathrm{4}}\right)}{\mathrm{n}!}\left(\mathrm{z}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{n}}…
Question Number 16501 by gokux2123 last updated on 23/Jun/17 $$\mathrm{3}+\mathrm{3} \\ $$ Answered by Tinkutara last updated on 23/Jun/17 $$\mathrm{3}\:+\:\mathrm{3}\:=\:\mathrm{6} \\ $$ Terms of Service…
Question Number 82030 by naka3546 last updated on 17/Feb/20 $${a}\:−\:{b}\:+\:{c}\:−\:{d}\:\:=\:\:\mathrm{2} \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:{d}^{\mathrm{2}} \:\:=\:\:\mathrm{6} \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:−\:{d}^{\mathrm{3}} \:\:=\:\:\mathrm{20} \\ $$$${a}^{\mathrm{4}} \:−\:{b}^{\mathrm{4}}…
Question Number 147535 by tabata last updated on 21/Jul/21 Commented by tabata last updated on 21/Jul/21 $${prove}\:{that} \\ $$ Answered by mathmax by abdo last…
Question Number 147513 by tabata last updated on 21/Jul/21 Commented by tabata last updated on 21/Jul/21 $${how}\:{can}\:{change}\:{the}\:{order} \\ $$ Answered by alcohol last updated on…
Question Number 81980 by Hassen_Timol last updated on 17/Feb/20 Commented by Hassen_Timol last updated on 17/Feb/20 $$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{these}\:\mathrm{2}\:\mathrm{numbers}\:\mathrm{please}? \\ $$ Commented by Hassen_Timol last updated on…
Question Number 81970 by arkanmath7@gmail.com last updated on 17/Feb/20 $${find}\:{the}\:{limit}\:{as}\:{n}\:−>\infty \\ $$$$ \\ $$$${lim}\left(\mathrm{2}−\:^{{n}} \sqrt{{x}}\right)^{{n}} \\ $$$$ \\ $$ Commented by msup trace by abdo…
Question Number 81966 by naka3546 last updated on 17/Feb/20 $$\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\right)^{\mathrm{2020}} \:+\:\:\left(\frac{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\right)^{\mathrm{2020}} \:\:=\:\:\:{A} \\ $$$${A}^{\mathrm{4}} \:\:=\:\:? \\ $$ Answered by TANMAY PANACEA last updated on 17/Feb/20…
Question Number 147492 by Kunal12588 last updated on 21/Jul/21 $$\mathrm{2}\sqrt{\mathrm{19}}\:\mathrm{cos}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{45}\sqrt{\mathrm{3}}}{\mathrm{28}}\right)\right] \\ $$$${it}\:{is}\:{equal}\:{to}\:\mathrm{8}.\:{How}? \\ $$ Commented by MJS_new last updated on 21/Jul/21 $$\mathrm{just}\:\mathrm{an}\:\mathrm{idea} \\ $$$${x}^{\mathrm{3}}…
Question Number 16406 by liday last updated on 21/Jun/17 $$\mathrm{D}=\left\{\left({x},\mathrm{y}\right)\mid\mid{x}\mid+\mid\mathrm{y}\mid\leqslant\mathrm{1},\mid{x}\mid+\mid{y}\mid\geqslant\mathrm{0}.\mathrm{5}\right\} \\ $$$$\underset{\mathrm{D}} {\int\int}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$$$\left.\mathrm{a}\right)\geqslant\mathrm{0}; \\ $$$$\left.\mathrm{b}\right)\leqslant\mathrm{0}; \\ $$$$\left.\mathrm{c}\right)=\mathrm{0}; \\ $$$$\left.\mathrm{d}\right)\mathrm{non}-\mathrm{existent}. \\ $$…