Menu Close

Category: None

Question-147091

Question Number 147091 by aliibrahim1 last updated on 17/Jul/21 Answered by Olaf_Thorendsen last updated on 18/Jul/21 $${f}\left({x},{y}+{z}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{z}\right) \\ $$$${y}\:=\:{z} \\ $$$${f}\left({x},\mathrm{2}{y}\right)\:=\:{f}\left({x},{y}\right){f}\left({x},{y}\right)\:=\:{f}^{\mathrm{2}} \left({x},{y}\right) \\ $$$$\Rightarrow\:{f}\left({x},\mathrm{2}^{{n}} {y}\right)\:=\:{f}^{\mathrm{2}^{{n}}…

Two-horses-pull-horizontally-on-ropes-attached-to-a-stump-The-two-forces-F-and-T-that-they-applied-to-the-stump-are-such-that-the-resultant-R-has-a-magnitude-equal-to-F-and-makes-an-angle-of-90-with-

Question Number 16015 by chux last updated on 16/Jun/17 $$\mathrm{Two}\:\mathrm{horses}\:\mathrm{pull}\:\mathrm{horizontally}\:\mathrm{on} \\ $$$$\mathrm{ropes}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{a}\:\mathrm{stump}.\mathrm{The} \\ $$$$\mathrm{two}\:\mathrm{forces}\:\mathrm{F}\:\mathrm{and}\:\mathrm{T}\:\mathrm{that}\:\mathrm{they} \\ $$$$\mathrm{applied}\:\mathrm{to}\:\mathrm{the}\:\mathrm{stump}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{resultant}\:\mathrm{R}\:\mathrm{has}\:\mathrm{a}\:\mathrm{magnitude} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{F}\:\mathrm{and}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of} \\ $$$$\mathrm{90}°\:\mathrm{with}\:\mathrm{F}.\mathrm{Let}\:\mathrm{F}=\mathrm{1300N}\:\mathrm{and}\: \\ $$$$\mathrm{R}=\mathrm{1300N}.\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{T}. \\…

prove-that-when-light-travels-through-a-triangular-glass-prism-of-angle-A-the-refractive-index-n-is-given-by-n-sin-A-D-min-2-sin-A-2-

Question Number 16012 by chux last updated on 16/Jun/17 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{when}\:\mathrm{light}\:\mathrm{travels}\: \\ $$$$\mathrm{through}\:\mathrm{a}\:\mathrm{triangular}\:\mathrm{glass}\:\mathrm{prism}\: \\ $$$$\mathrm{of}\:\mathrm{angle}\:\mathrm{A} \\ $$$$\mathrm{the}\:\mathrm{refractive}\:\mathrm{index}\:\left(\mathrm{n}\right)\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by} \\ $$$$\mathrm{n}=\mathrm{sin}\:\left(\frac{\mathrm{A}+\mathrm{D}_{\mathrm{min}} }{\mathrm{2}}\right)/\mathrm{sin}\:\left(\frac{\mathrm{A}}{\mathrm{2}}\right) \\ $$ Commented by…

find-laurant-series-lf-1-f-z-1-z-1-1-z-2-z-gt-1-2-f-z-1-z-2-2-z-3-z-lt-3-

Question Number 147066 by tabata last updated on 17/Jul/21 $${find}\:{laurant}\:{series}\:{lf} \\ $$$$ \\ $$$$\:\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{1}}+\frac{\mathrm{1}}{{z}+\mathrm{2}}\:\:,\mid{z}\mid>\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{2}}−\frac{\mathrm{2}}{{z}−\mathrm{3}}\:\:,\mid{z}\mid<\mathrm{3} \\ $$ Answered by mathmax by abdo…

tan-2-x-sec-x-dx-

Question Number 15972 by icyfalcon999 last updated on 16/Jun/17 $$\int\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:\mathrm{sec}\:\mathrm{x}\:\mathrm{dx}\: \\ $$ Commented by tawa tawa last updated on 16/Jun/17 $$\int\mathrm{tan}^{\mathrm{2}} \mathrm{x}\:\mathrm{secx}\:\mathrm{dx} \\ $$$$\mathrm{From}\:\mathrm{the}\:\mathrm{trigonometry}\:\mathrm{identity}:\:\mathrm{tan}^{\mathrm{2}}…