Menu Close

Category: None

On-the-Argand-Diagram-the-variable-point-Z-represents-a-complex-number-z-Find-the-equation-of-the-locus-of-a-point-Z-which-moves-such-that-z-1-z-2-2-

Question Number 141681 by ZiYangLee last updated on 22/May/21 $$\mathrm{On}\:\mathrm{the}\:\mathrm{Argand}\:\mathrm{Diagram},\:\mathrm{the}\:\mathrm{variable}\:\mathrm{point} \\ $$$$\mathrm{Z}\:\mathrm{represents}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}\:{z}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{a}\:\mathrm{point} \\ $$$$\mathrm{Z}\:\mathrm{which}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mid\frac{{z}−\mathrm{1}}{{z}+\mathrm{2}}\mid=\mathrm{2} \\ $$ Answered by MJS_new last updated on 22/May/21…

If-the-sides-of-a-triangle-are-consecutive-integers-and-the-maximum-angle-is-twice-the-minimum-determine-the-sides-of-the-triangle-

Question Number 76112 by Maclaurin Stickker last updated on 23/Dec/19 $${If}\:{the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{consecutive} \\ $$$${integers}\:{and}\:{the}\:{maximum}\:{angle} \\ $$$${is}\:{twice}\:{the}\:{minimum},\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}. \\ $$ Answered by mr W last updated…

Question-76108

Question Number 76108 by Maclaurin Stickker last updated on 23/Dec/19 Commented by Maclaurin Stickker last updated on 23/Dec/19 $${in}\:{the}\:{figure},\:{the}\:{circumferences} \\ $$$${have}\:{radius}\:\mathrm{8}\:{cm}\:{and}\:\mathrm{6}\:{cm}\:{and}\:{the} \\ $$$${distance}\:{between}\:{their}\:{centers}\:{is}\:\mathrm{12}\:{cm}.\: \\ $$$${If}\:{QP}={PR},\:{find}\:{QP}.…

3-2-2-1-2-4-1-2-8-1-2-16-1-2-32-1-2-64-1-2-128-1-

Question Number 10575 by ridwan balatif last updated on 19/Feb/17 $$\mathrm{3}\left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{4}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{8}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{16}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{32}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{64}} +\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{128}} +\mathrm{1}\right)=…? \\ $$ Commented by FilupS last updated…

Question-141643

Question Number 141643 by Gbenga last updated on 21/May/21 Answered by qaz last updated on 22/May/21 $${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{5}{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{16}^{{n}} } \\ $$$$=\left(\mathrm{5}{xD}+\mathrm{1}\right)^{\mathrm{2}} \mid_{{x}=\mathrm{1}/\mathrm{16}} \underset{{n}=\mathrm{0}}…

Question-10566

Question Number 10566 by krist last updated on 18/Feb/17 Answered by ridwan balatif last updated on 18/Feb/17 $$\int\frac{\mathrm{cos}{x}}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{\mathrm{cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{\mathrm{cos}{x}}{\mathrm{sin}{x}}×\frac{\mathrm{1}}{\mathrm{sin}{x}}{dx} \\…

Question-76098

Question Number 76098 by vishalbhardwaj last updated on 23/Dec/19 Answered by benjo last updated on 23/Dec/19 $$\mathrm{5}.\:\mathrm{let}\:\mathrm{x}\:=\:\mathrm{u}\:+\:\mathrm{c}\:\Rightarrow\mathrm{dx}\:=\mathrm{du}\: \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\overset{\mathrm{b}} {\int}\mathrm{f}\left(\mathrm{u}+\mathrm{c}\right)\mathrm{du}\: \\ $$ Commented by john…