Question Number 146771 by ZiYangLee last updated on 15/Jul/21 $$\mathrm{Given}\:\mathrm{that}\:{y}''−\mathrm{4}{y}'+\mathrm{3}{y}=\mathrm{0},\:{y}\left(\mathrm{0}\right)=\mathrm{0},\:{y}'\left(\mathrm{0}\right)=\mathrm{2}, \\ $$$$\mathrm{find}\:{y}\left(\mathrm{ln}\:\mathrm{2}\right). \\ $$ Answered by mathmax by abdo last updated on 15/Jul/21 $$\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{4r}+\mathrm{3}=\mathrm{0}\:\rightarrow\Delta^{'}…
Question Number 81226 by 20092104 last updated on 10/Feb/20 $$\frac{{d}}{{dx}}\left({x}!\right)\:{and}\:\frac{{d}}{{dx}}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{x}\right) \\ $$ Answered by MJS last updated on 10/Feb/20 $$\frac{{d}}{{dx}}\left[{x}!\right]\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{because}\:{x}!\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{x}=\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\frac{{d}}{{dx}}\left[\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{2}}\right]={x}+\frac{\mathrm{1}}{\mathrm{2}} \\…
Question Number 146761 by tabata last updated on 15/Jul/21 $${Solve}\:{the}\:{partial}\:{defferintial}\:{equation} \\ $$$${u}_{{t}} ={a}^{\mathrm{2}} {u}_{{xx}} \:\:\:,\mathrm{0}<{x}<{L}\:,{t}>\mathrm{0} \\ $$$$ \\ $$$${u}\left(\mathrm{0},{t}\right)=\mathrm{0}\:\:{and}\:{u}\left({L},{t}\right)=\mathrm{0}\:\:{and}\:{u}_{{x}} \left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$ Commented by tabata…
Question Number 146758 by tabata last updated on 15/Jul/21 $${find}\:{forier}\:{series}\:{to}\:{half}\:{rang}\:{of}\: \\ $$$${f}\left({x}\right)={sinx}\:\:,\mathrm{0}<{x}<\pi\:{and}\:{prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by Olaf_Thorendsen last updated on…
Question Number 81217 by M±th+et£s last updated on 10/Feb/20 Answered by mind is power last updated on 10/Feb/20 $${i}\:{will}\:{poste}\:{all}\:{solution}\:{later}! \\ $$$${for}\:\mathrm{2}{nd}\:{Somme}\:{mistacks} \\ $$$${i}\:{found} \\ $$$${f}\left({x}\right)=\int\frac{\sqrt{{tan}\left(\mathrm{2}{x}\right)}}{{sin}\left({x}\right)}{dx}=\mathrm{2}\sqrt{\mathrm{2}.{tan}\left({x}\right)}.\:\:\:\:_{\mathrm{2}}…
Question Number 146722 by SOMEDAVONG last updated on 15/Jul/21 $$\mathrm{D}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}−\mathrm{1}}\left[\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}}\:+\:\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}\:+\:…+\:\frac{\mathrm{sin}\frac{\mathrm{88}}{\mathrm{n}}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}}\right] \\ $$ Answered by Olaf_Thorendsen last updated on 15/Jul/21 $$\mathrm{S}_{{n}} \:=\:\frac{{n}^{\mathrm{2}} }{{n}−\mathrm{1}}\left[\underset{{k}=\mathrm{2}} {\overset{{n}}…
Question Number 146702 by faysal last updated on 13/Nov/23 Answered by Olaf_Thorendsen last updated on 15/Jul/21 $$ \\ $$$${ne}^{{i}\theta} \:=\:\frac{\mathrm{3}+\mathrm{3}{i}}{\mathrm{2}+\mathrm{3}{i}}+\frac{\mathrm{1}+\mathrm{5}{i}}{\mathrm{1}−\mathrm{2}{i}} \\ $$$${ne}^{{i}\theta} \:=\:\frac{\mathrm{3}\left(\mathrm{1}+{i}\right)\left(\mathrm{2}−\mathrm{3}{i}\right)}{\left(\mathrm{2}+\mathrm{3}{i}\right)\left(\mathrm{2}−\mathrm{3}{i}\right)}+\frac{\left(\mathrm{1}+\mathrm{5}{i}\right)\left(\mathrm{1}+\mathrm{2}{i}\right)}{\left(\mathrm{1}−\mathrm{2}{i}\right)\left(\mathrm{1}+\mathrm{2}{i}\right)} \\ $$$${ne}^{{i}\theta}…
Question Number 146689 by naka3546 last updated on 15/Jul/21 $$\int\:\:\frac{−\mathrm{3}{x}+\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}\right)^{\mathrm{2}} }}\:\:{dx}\:\:=\:\:\:…\:\:? \\ $$$${Solve}\:\:{it}\:\:{without}\:\:{substitution}\:\:{method}. \\ $$ Answered by Ar Brandon last updated on 15/Jul/21 $$\mathcal{I}=\int\frac{−\mathrm{3x}+\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{3x}^{\mathrm{2}}…
Question Number 81134 by 20092104 last updated on 09/Feb/20 $${prove}\:{A}×{B}\neq{B}×{A} \\ $$$${with}\:{A}\:{and}\:{B}\:{are}\:{matrices} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81133 by 1406 last updated on 09/Feb/20 $${find}\:{this}\: \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}\sqrt[{\mathrm{7}}]{{cot}^{\mathrm{4}} {x}}}{dx} \\ $$ Commented by jagoll last updated on 10/Feb/20 $$\int\:\frac{{csc}^{\mathrm{2}} {x}\:{dx}}{\:\sqrt[{\mathrm{7}\:}]{\mathrm{cot}\:^{\mathrm{4}}…