Menu Close

Category: None

I-was-able-to-discover-the-conditions-for-the-sum-of-two-irrational-numbers-be-an-integer-and-the-conditions-for-the-sum-be-a-finite-decimal-But-I-can-not-do-the-same-for-periodic-tithe-Someone-can-

Question Number 9372 by geovane10math last updated on 03/Dec/16 $$\mathrm{I}\:\mathrm{was}\:\mathrm{able}\:\mathrm{to}\:\mathrm{discover}\:\mathrm{the}\:\mathrm{conditions}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{irrational}\:\mathrm{numbers}\:\mathrm{be}\:\mathrm{an} \\ $$$$\mathrm{integer}\:\mathrm{and}\:\mathrm{the}\:\mathrm{conditions}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{be}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{decimal}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{can}\:\mathrm{not}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{for}\:\mathrm{periodic} \\ $$$$\mathrm{tithe}. \\ $$$$\mathrm{Someone}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me},\:\mathrm{please}? \\ $$$$ \\…

Question-74863

Question Number 74863 by mrS last updated on 02/Dec/19 Commented by abdomathmax last updated on 03/Dec/19 $${we}\:{have}\:{S}=\sum_{{n}=\mathrm{1}} ^{\mathrm{45}} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\sum_{{p}=\mathrm{1}} ^{\left[\frac{\mathrm{45}}{\mathrm{2}}\right]} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}\right)^{\mathrm{2}} }\:+\sum_{{p}=\mathrm{0}} ^{\left[\frac{\mathrm{45}−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}}…

Question-140384

Question Number 140384 by Willson last updated on 07/May/21 Answered by benjo_mathlover last updated on 07/May/21 $$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}^{\mathrm{p}} +\mathrm{1}\right)^{\mathrm{n}} \left(\mathrm{x}^{\mathrm{q}} +\mathrm{1}\right)^{\mathrm{m}} −\mathrm{1}}{\mathrm{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{nx}^{\mathrm{p}}…

Question-74840

Question Number 74840 by aliesam last updated on 01/Dec/19 Commented by kaivan.ahmadi last updated on 01/Dec/19 $${a}^{\mathrm{4}} =\mathrm{1}\Rightarrow \\ $$$${b}^{\mathrm{4}} ={a}^{\mathrm{4}} =\mathrm{1}\Rightarrow{o}\left({b}\right)=\mathrm{4} \\ $$$$\left({a}^{\mathrm{2}} \right)^{\mathrm{2}}…

Question-140367

Question Number 140367 by aliibrahim1 last updated on 06/May/21 Answered by meetbhavsar25 last updated on 06/May/21 $${Answer}\:{is}\:\frac{\mathrm{9}}{\mathrm{25}}. \\ $$$${x}^{\mathrm{2}} \:{has}\:{minimum}\:{value}\:\mathrm{0}. \\ $$$${y}^{\mathrm{2}} \:{has}\:{minimum}\:{value}\:\mathrm{0}. \\ $$$$\left({z}−\mathrm{1}\right)^{\mathrm{2}}…

About-the-Euler-Mascheroni-Constant-0-1-1-1-x-1-ln-x-dx-We-can-see-that-1-x-0-1-x-x-0-ln-x-If-x-0-and-x-1-in-the-Cartesian-Plane-this-fun

Question Number 9275 by geovane10math last updated on 27/Nov/16 $$\mathrm{About}\:\mathrm{the}\:\mathrm{Euler}-\mathrm{Mascheroni}\:\mathrm{Constant}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\gamma\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}\:−\:{x}}\:+\:\frac{\mathrm{1}}{\mathrm{ln}\:{x}}\:{dx} \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that}\: \\ $$$$\:\mathrm{1}−\:{x}\:\neq\:\mathrm{0}\:\Leftrightarrow\:\mathrm{1}\:\neq\:{x}\:; \\ $$$${x}\:=\:\mathrm{0}\:\rightarrow\:\mathrm{ln}\:{x}\:\nexists\:. \\ $$$$\mathrm{If}\:{x}\:\neq\:\mathrm{0}\:\mathrm{and}\:{x}\:\neq\:\mathrm{1},\:\mathrm{in}\:\mathrm{the}\:\mathrm{Cartesian}\:\mathrm{Plane}, \\ $$$$\mathrm{this}\:\mathrm{function}\:\mathrm{has}\:\mathrm{singularity}\:{x}=\mathrm{0}\:{and}\:{x}=\mathrm{1}. \\…