Menu Close

Category: None

Question-144059

Question Number 144059 by 0731619 last updated on 21/Jun/21 Answered by Olaf_Thorendsen last updated on 21/Jun/21 $$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{sin}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} {x}+{a}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{tan}^{\mathrm{2}} {x}}{{b}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}}…

Between-12-p-m-today-and-12-p-m-tomorrow-how-many-times-do-the-hour-hand-and-the-minute-hand-on-a-clock-form-an-angle-of-120-

Question Number 144025 by ZiYangLee last updated on 20/Jun/21 $$\mathrm{Between}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}.\:\mathrm{today}\:\mathrm{and}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}. \\ $$$$\mathrm{tomorrow},\:\mathrm{how}\:\mathrm{many}\:\mathrm{times}\:\mathrm{do}\:\mathrm{the} \\ $$$$\mathrm{hour}\:\mathrm{hand}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minute}\:\mathrm{hand}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{clock}\:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{120}°? \\ $$ Answered by mr W last updated on…

for-a-gt-0-and-b-gt-a-2-verify-the-follwing-claim-n-1-n-a-a-1-a-2-a-n-1-b-b-1-b-2-b-n-1-a-b-1-b-a-1-b-a-2-

Question Number 78456 by arkanmath7@gmail.com last updated on 17/Jan/20 $${for}\:{a}>\mathrm{0}\:{and}\:{b}>{a}+\mathrm{2}\:,\:\:{verify}\:{the}\:{follwing}\: \\ $$$${claim}: \\ $$$$\:\:\:\sum_{{n}=\mathrm{1}} ^{\:\:\infty} \:{n}\:\frac{{a}\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right)…\left({a}+{n}−\mathrm{1}\right)}{{b}\left({b}+\mathrm{1}\right)\left({b}+\mathrm{2}\right)…\left({b}+{n}−\mathrm{1}\right)}\:=\frac{{a}\left({b}−\mathrm{1}\right)}{\left({b}−{a}−\mathrm{1}\right)\left({b}−{a}−\mathrm{2}\right)} \\ $$ Answered by mind is power last updated…

Given-that-is-a-complex-number-7-1-1-find-the-value-of-1-2-3-4-5-6-

Question Number 143970 by ZiYangLee last updated on 20/Jun/21 $$\mathrm{Given}\:\mathrm{that}\:\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}, \\ $$$$\omega^{\mathrm{7}} =\mathrm{1},\:\omega\neq\mathrm{1},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\omega^{\mathrm{1}} +\omega^{\mathrm{2}} +\omega^{\mathrm{3}} +\omega^{\mathrm{4}} +\omega^{\mathrm{5}} +\omega^{\mathrm{6}} . \\ $$ Answered by…

Question-143965

Question Number 143965 by Khalmohmmad last updated on 20/Jun/21 Commented by Canebulok last updated on 20/Jun/21 $$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\frac{{log}\left({x}\right)}{{log}\left(\mathrm{3}\right)}\:+\:\frac{{log}\left(\mathrm{5}\right)}{{log}\left({x}\right)}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{log}\left({x}\right)^{\mathrm{2}} \:+\:{log}\left(\mathrm{5}\right){log}\left(\mathrm{3}\right)\:=\:\mathrm{0} \\ $$$$\: \\…