Question Number 139056 by sahnaz last updated on 21/Apr/21 $$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{10}×+\mathrm{6}\right)^{\mathrm{x}−\mathrm{2}} >\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 139053 by mathocean1 last updated on 21/Apr/21 Commented by mathocean1 last updated on 21/Apr/21 $${Determinate}\:{R} \\ $$ Answered by mr W last updated…
Question Number 73523 by 01 last updated on 13/Nov/19 $$\mathrm{prove}\:\mathrm{that}\::\: \\ $$$$\:\mathrm{2}^{\pi} >\mathrm{8} \\ $$ Answered by MJS last updated on 13/Nov/19 $$\mathrm{3}<\pi\:\Rightarrow\:\pi=\mathrm{3}+{p};\:{p}>\mathrm{0} \\ $$$$\mathrm{2}^{\mathrm{3}+{p}}…
Question Number 139027 by mohammad17 last updated on 21/Apr/21 $${find}\:{Re}\left({z}\right)\:{and}\:{Im}\left({z}\right)\:{of}\:\left[\left({e}^{{i}\left(\mathrm{1}+\mathrm{2}{k}\right)\pi} \right)^{\frac{\mathrm{1}}{\mathrm{10}}} +\mathrm{1}\right]^{−\mathrm{1}} \\ $$$$ \\ $$ Commented by mohammad17 last updated on 21/Apr/21 $$???? \\…
Question Number 139023 by mohammad17 last updated on 21/Apr/21 $${find}\:{Re}\left({z}\right)\:{and}\:{Im}\left({z}\right)\:{of}\:{z}=\left(−\mathrm{2}{i}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$ Answered by MJS_new last updated on 21/Apr/21 $$−\mathrm{2i}=\mathrm{2e}^{−\frac{\pi}{\mathrm{2}}\mathrm{i}} \\ $$$$\left(\mathrm{2e}^{−\frac{\pi}{\mathrm{2}}\mathrm{i}} \right)^{−\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{2}^{−\frac{\mathrm{3}}{\mathrm{2}}} \mathrm{e}^{\frac{\mathrm{3}\pi}{\mathrm{4}}\mathrm{i}}…
Question Number 73474 by revublik last updated on 13/Nov/19 $$\rceil\mathrm{888}>>>>>>> \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138998 by ZiYangLee last updated on 21/Apr/21 $$\int\:\left(\frac{{e}^{−\mathrm{1}/{x}} }{{x}^{\mathrm{2}} }\right)\:{dx}\:=? \\ $$ Answered by phanphuoc last updated on 21/Apr/21 $$=\int{e}^{\left(−\mathrm{1}/{x}\right)} {d}\left(−\mathrm{1}/{x}\right)={e}^{−\mathrm{1}/{x}} +{c} \\…
Question Number 138980 by 7770 last updated on 20/Apr/21 $$\sqrt{\frac{\mathrm{7}{x}+\mathrm{2}}{{x}+\mathrm{2}}}−\frac{\mathrm{12}}{\mathrm{7}\left(\mathrm{7}{x}+\mathrm{2}\right)}=\frac{\mathrm{53}}{\mathrm{28}} \\ $$$${find}\:{x} \\ $$ Answered by MJS_new last updated on 21/Apr/21 $${t}=\sqrt{\frac{{x}+\mathrm{2}}{\mathrm{7}{x}+\mathrm{2}}}>\mathrm{0}\:\Leftrightarrow\:{x}=−\frac{\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{1}} \\…
Question Number 138983 by physicstutes last updated on 20/Apr/21 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{numbers}\:\mathbb{C}\:\mathrm{under}\:\mathrm{the}\:\mathrm{usual} \\ $$$$\mathrm{addition}\:\mathrm{and}\:\mathrm{multiplication}\:\mathrm{form}\:\mathrm{a}\:\mathrm{field}. \\ $$$$\left(\mathbb{C},+,×\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7883 by 314159 last updated on 23/Sep/16 $${Let}\:{a},{b},{c}\:{be}\:{the}\:{lengths}\:{of}\:{the}\:{sides}\:{of}\:{a}\:{triangle}. \\ $$$${Show}\:{that}\:{abc}\geqslant\left({a}+{b}−{c}\right)\left({b}+{c}−{a}\right)\left({c}+{a}−{b}\right). \\ $$ Commented by sou1618 last updated on 23/Sep/16 $$ \\ $$$${x}={a}+{b}−{c}>\mathrm{0} \\…