Question Number 138302 by mathdave last updated on 12/Apr/21 $${if}\:\:\mathrm{tan}^{\mathrm{2}} {x}=\mathrm{1}+\mathrm{2tan}^{\mathrm{2}} {y} \\ $$$${show}\:{that} \\ $$$$\mathrm{cos2}{x}+\mathrm{sin}^{\mathrm{2}} {y}=\mathrm{0} \\ $$ Answered by Ñï= last updated on…
Question Number 138280 by sahnaz last updated on 11/Apr/21 $$\mathrm{x}^{\mathrm{x}+\mathrm{4}} =\mathrm{32}\:\:\:\:\mathrm{solution}\:\mathrm{method}? \\ $$ Commented by Dwaipayan Shikari last updated on 11/Apr/21 Commented by Dwaipayan Shikari…
Question Number 72746 by aliesam last updated on 01/Nov/19 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{5}{n}\right)!} \\ $$ Answered by mind is power last updated on 01/Nov/19 $$\mathrm{1}+\mathrm{z}+\mathrm{z}^{\mathrm{2}} +\mathrm{z}^{\mathrm{3}}…
Question Number 7187 by 314159 last updated on 15/Aug/16 $${Prove}\:{that}\:\frac{\sqrt{\mathrm{4}{sin}^{\mathrm{2}} \mathrm{36}−\mathrm{1}}}{\mathrm{2}}={cos}\mathrm{72}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138248 by sahnaz last updated on 11/Apr/21 $$\mathrm{x}^{\mathrm{x}+\mathrm{4}} =\mathrm{32} \\ $$ Commented by mr W last updated on 11/Apr/21 $${no}\:{exact}\:{solution}! \\ $$$${x}\approx\mathrm{1}.\mathrm{8149} \\…
Question Number 138249 by sahnaz last updated on 11/Apr/21 $$\mathrm{li}\underset{\mathrm{n}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} +\mathrm{3}^{\mathrm{n}+\mathrm{2}} +\mathrm{4}^{\mathrm{n}+\mathrm{3}} }{\mathrm{2}^{\mathrm{n}} +\mathrm{3}^{\mathrm{n}} +\mathrm{4}^{\mathrm{n}} } \\ $$ Answered by mathmax by abdo last…
Question Number 138250 by sahnaz last updated on 11/Apr/21 $$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{10x}+\mathrm{6}\right)^{\mathrm{x}−\mathrm{2}} >\mathrm{1} \\ $$ Answered by bobhans last updated on 11/Apr/21 $$\left({x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{6}\right)^{{x}−\mathrm{2}} \:>\:\left({x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{6}\right)^{\mathrm{0}}…
Question Number 138236 by mohammad17 last updated on 11/Apr/21 $${prove}\:{that}\: \\ $$$$ \\ $$$$\frac{{e}^{−\mathrm{2}{y}} }{\mathrm{1}+{e}^{−\mathrm{2}{y}} }<\mid{tan}\left({z}\right)\:−\:{i}\mid<\frac{{e}^{−\mathrm{2}{y}} }{\mathrm{1}−{e}^{−\mathrm{2}{y}} }\:\:\:,{y}>\mathrm{0} \\ $$$$ \\ $$$${how}\:{can}\:{solve}\:{this}\:? \\ $$ Commented…
Question Number 7164 by aftab ahmad last updated on 14/Aug/16 Answered by Yozzia last updated on 14/Aug/16 $${By}\:{Power}\:{of}\:{a}\:{Point}\:{theorem}, \\ $$$$\left({AB}\right)\left({AC}\right)=\left({AD}\right)\left({AD}\right)=\left({AD}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{AC}=\frac{\left({AD}\right)^{\mathrm{2}} }{{AB}}=\frac{\mathrm{10}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{20}{cm} \\…
Question Number 7159 by Master Moon last updated on 14/Aug/16 $$\boldsymbol{{log}}_{\mathrm{2}} \underset{\boldsymbol{{x}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\:\underset{\boldsymbol{{y}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\left(\mathrm{1}+\boldsymbol{{e}}^{\frac{\mathrm{2}\boldsymbol{\pi{ixy}}}{\mathrm{2015}}} \right)\:=\:? \\ $$ Commented by FilupSmith last updated on…