Menu Close

Category: None

a-b-c-d-e-f-g-h-i-j-are-different-nonnegative-integers-Find-all-numbers-that-satisfy-a-bc-def-ghij-

Question Number 72093 by naka3546 last updated on 24/Oct/19 $${a},\:{b},\:{c},\:{d},\:{e},\:{f},\:{g},\:{h},\:{i},\:{j}\:\:\:{are}\:\:\:{different}\:\:{nonnegative}\:\:{integers}\:. \\ $$$${Find}\:\:{all}\:\:{numbers}\:\:{that}\:\:{satisfy} \\ $$$$\:\:\:\:\:{a}\:×\:{bc}\:×\:{def}\:\:=\:\:{ghij} \\ $$ Commented by prakash jain last updated on 24/Oct/19 $${abcdef}={ghij}?…

x-1-pi-pi-1-2-pi-2-3-pi-3-4-4-5-2-6-3-7-4-x-2-x-1-x-2-x-1-

Question Number 137590 by Ñï= last updated on 04/Apr/21 $${x}=\mathrm{1}+\frac{\pi+\left(\pi+\mathrm{1}\right)^{\mathrm{2}} +\left(\pi+\mathrm{2}\right)^{\mathrm{3}} +\left(\pi+\mathrm{3}\right)^{\mathrm{4}} }{\mathrm{4}+\mathrm{5}^{\mathrm{2}} +\mathrm{6}^{\mathrm{3}} +\mathrm{7}^{\mathrm{4}} } \\ $$$$\sqrt{{x}+\mathrm{2}\sqrt{{x}−\mathrm{1}}}+\sqrt{{x}−\mathrm{2}\sqrt{{x}−\mathrm{1}}}=? \\ $$ Commented by mindispower last updated…

Question-72048

Question Number 72048 by ahmadshahhimat775@gmail.com last updated on 23/Oct/19 Answered by mind is power last updated on 23/Oct/19 $$\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{1}+\mathrm{3}}=\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{3}.\mathrm{2}^{\mathrm{0}} }{\mathrm{2}}=\frac{\mathrm{2}+\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{2}+\mathrm{2}^{\mathrm{0}} }{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}}=\frac{\mathrm{6}}{\mathrm{5}}\:=\frac{\mathrm{3}.\mathrm{2}}{\mathrm{3}.\mathrm{2}−\mathrm{1}}=\frac{\mathrm{4}+\mathrm{2}}{\mathrm{4}+\mathrm{2}−\mathrm{1}}=\frac{\mathrm{2}+\mathrm{2}^{\mathrm{2}}…

Question-72046

Question Number 72046 by aliesam last updated on 23/Oct/19 Commented by mathmax by abdo last updated on 26/Oct/19 $${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {nln}\left(\mathrm{1}+\left(\frac{{x}}{{n}}\right)^{\alpha} \right){dx}\:\Rightarrow{U}_{{n}} =_{\frac{{x}}{{n}}={t}} \:\:\:\int_{\mathrm{0}}…

Question-72047

Question Number 72047 by aliesam last updated on 23/Oct/19 Commented by mind is power last updated on 23/Oct/19 $$\mathrm{x}_{\mathrm{1}} =\mathrm{1},\mathrm{x}_{\mathrm{2}} =\mathrm{4},\mathrm{x}_{\mathrm{3}} =\mathrm{9},\mathrm{x}_{\mathrm{4}} =\mathrm{16} \\ $$$$\forall_{\mathrm{n}}…

A-1-3-2-1-3-1-2-1-3-1-3-1-3-

Question Number 137582 by SOMEDAVONG last updated on 04/Apr/21 $$\mathrm{A}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Answered by Ñï= last updated on 04/Apr/21 $${A}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}−\mathrm{1}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\right)}…