Menu Close

Category: None

define-the-concept-of-a-contingency-Which-of-the-following-is-a-contingency-and-which-is-a-tautology-1-P-P-Q-2-P-P-Q-

Question Number 76575 by Rio Michael last updated on 28/Dec/19 $${define}\:{the}\:{concept}\:{of}\:{a}\:\boldsymbol{{contingency}} \\ $$$${Which}\:{of}\:{the}\:{following}\:{is}\:{a}\:{contingency}\: \\ $$$${and}\:{which}\:{is}\:{a}\:{tautology} \\ $$$$\left.\mathrm{1}\right)\:\left({P}\:\Rightarrow\sim{P}\right)\:\vee\:{Q}\:\: \\ $$$$\left.\mathrm{2}\right)\:\left({P}\:\Rightarrow\:\sim{P}\right)\:\Rightarrow\:{Q} \\ $$ Answered by benjo 1/2…

1-1-1-t-dt-

Question Number 142100 by ZiYangLee last updated on 26/May/21 $$\:\:\:\:\:\:\int^{\:} \:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{1}+{t}}\:}\:{dt}=? \\ $$ Answered by iloveisrael last updated on 26/May/21 $${I}=\int\:\frac{{dt}}{\mathrm{1}+\sqrt{\mathrm{1}+{t}}}\:=\:\int\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+{t}}}{−{t}}\:{dt} \\ $$$${I}=\int\:\frac{\sqrt{\mathrm{1}+{t}}}{{t}}\:{dt}\:−\mathrm{ln}\:{t}\:+{c} \\ $$$${let}\:\sqrt{\mathrm{1}+{t}}\:=\:{u}\Rightarrow{t}={u}^{\mathrm{2}}…

Question-11020

Question Number 11020 by ridwan balatif last updated on 07/Mar/17 Answered by sandy_suhendra last updated on 08/Mar/17 Commented by sandy_suhendra last updated on 08/Mar/17 $$\left.\mathrm{1}\right)\:\mathrm{P}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{A}\:,\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B}\right)\:=\:\mathrm{P}\left(\mathrm{5},\mathrm{7}\right)…

Question-11019

Question Number 11019 by ridwan balatif last updated on 07/Mar/17 Answered by bahmanfeshki last updated on 07/Mar/17 $${I}=\int_{\mathrm{2}} ^{{n}} {xe}^{−\mathrm{2}{x}+\mathrm{4}} \:{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\left(\left[{xe}^{−\mathrm{2}{x}+\mathrm{4}} \right]_{\mathrm{2}} ^{{n}} −\int_{\mathrm{2}\:\:} ^{{n}}…

Prove-that-3-gt-log-2-3-2-gt-2-

Question Number 10995 by Nadium last updated on 06/Mar/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{3}>\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} >\mathrm{2}. \\ $$ Commented by FilupS last updated on 06/Mar/17 $$\mathrm{for}\:\:{l}=\mathrm{log}_{{n}} {x} \\ $$$$\mathrm{if}\:{n}>\mathrm{1}\:\mathrm{and}\:{x}\geqslant\mathrm{1},\:{l}\geqslant\mathrm{0}…