Menu Close

Category: None

0-1-ln-x-1-x-2-x-dx-pi-2-16-

Question Number 136765 by Ñï= last updated on 25/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{{x}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$ Answered by snipers237 last updated on 25/Mar/21 $${let}\:{named}\:{it}\:{A} \\…

f-x-e-x-g-x-ln-x-h-x-x-A-line-L-is-perpendicular-to-h-x-at-point-P-x-y-and-extends-and-disects-f-x-and-g-x-The-length-of-L-between-f-x-and-g-x-is-r-When-is-r-minimum-

Question Number 5692 by FilupSmith last updated on 24/May/16 $${f}\left({x}\right)={e}^{{x}} \\ $$$${g}\left({x}\right)=\mathrm{ln}\:{x} \\ $$$${h}\left({x}\right)={x} \\ $$$$ \\ $$$$\mathrm{A}\:\mathrm{line}\:{L}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:{h}\left({x}\right)\:\mathrm{at}\:\mathrm{point} \\ $$$${P}\left({x},{y}\right)\:\mathrm{and}\:\mathrm{extends}\:\mathrm{and}\:\mathrm{disects}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right). \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:{L}\:\mathrm{between}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right) \\ $$$$\mathrm{is}\:{r}.\:\mathrm{When}\:\mathrm{is}\:{r}\:\mathrm{minimum}? \\…

Let-p-q-r-are-positive-real-numbers-0-lt-r-lt-min-p-q-Prove-that-p-r-q-r-min-pq-r-2-p-q-2r-

Question Number 71206 by naka3546 last updated on 13/Oct/19 $${Let}\:\:{p},{q},{r}\:\:{are}\:\:{positive}\:\:{real}\:\:{numbers}\:. \\ $$$$\mathrm{0}\:<\:{r}\:<\:{min}\left\{{p},{q}\right\}. \\ $$$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\sqrt{{p}−{r}}\:+\:\sqrt{{q}−{r}}\:\:\leqslant\:\:{min}\left\{\sqrt{\frac{{pq}}{{r}}}\:,\:\sqrt{\mathrm{2}\left({p}+{q}\:−\:\mathrm{2}{r}\right)}\:\right\} \\ $$ Answered by mind is power last updated…

n-0-2n-n-1-4-n-2n-1-3-pi-3-48-pi-4-ln-2-2-

Question Number 136733 by Ñï= last updated on 25/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}\frac{\mathrm{1}}{\mathrm{4}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=\frac{\pi^{\mathrm{3}} }{\mathrm{48}}+\frac{\pi}{\mathrm{4}}{ln}^{\mathrm{2}} \mathrm{2} \\ $$ Answered by mindispower last updated on 25/Mar/21…

Question-136734

Question Number 136734 by mohammad17 last updated on 25/Mar/21 Answered by Ñï= last updated on 25/Mar/21 $${Q}\mathrm{5}::: \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{{D}^{\mathrm{2}} +\mathrm{3}{D}+\mathrm{12}}\left({e}^{{x}} \mathrm{cos}\:{x}−\mathrm{cos}\:{x}\right) \\ $$$$={e}^{{x}} \frac{\mathrm{1}}{{D}^{\mathrm{2}}…