Question Number 70783 by naka3546 last updated on 08/Oct/19 $$\frac{\mathrm{5}}{\mathrm{4}\centerdot\mathrm{9}}\:+\:\mathrm{2}\left(\frac{\mathrm{9}}{\mathrm{16}\centerdot\mathrm{25}}\right)\:+\:\mathrm{3}\left(\frac{\mathrm{13}}{\mathrm{36}\centerdot\mathrm{49}}\right)\:+\:\mathrm{4}\left(\frac{\mathrm{17}}{\mathrm{64}\centerdot\mathrm{81}}\right)\:+\:\mathrm{5}\left(\frac{\mathrm{21}}{\mathrm{100}\centerdot\mathrm{121}}\right)\:+\:\ldots\:=\:\:? \\ $$ Commented by tw000001 last updated on 08/Oct/19 $$\mathrm{Well},\mathrm{this}\:\mathrm{one}\:\mathrm{is}\:\mathrm{unconverge}\:\mathrm{series}\:\mathrm{because} \\ $$$$\mathrm{difference}\:\mathrm{and}\:\mathrm{ratio}\:\mathrm{are}\:\mathrm{different}. \\ $$$$\mathrm{But}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{approximately} \\…
Question Number 136313 by aurpeyz last updated on 20/Mar/21 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{dx} \\ $$ Answered by liberty last updated on 20/Mar/21 $$\int\:\frac{{dx}}{{x}^{\mathrm{3}} \:\sqrt{\mathrm{1}−\mathrm{9}{x}^{−\mathrm{2}} }}\:=\:\int\:\frac{{x}^{−\mathrm{3}} }{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{−\mathrm{2}}…
Question Number 136304 by aurpeyz last updated on 20/Mar/21 $$\int{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$ Answered by liberty last updated on 20/Mar/21 $$\:\int\:{x}^{\mathrm{2}} \:\left({x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:\right)\:{dx}\: \\…
Question Number 136301 by aurpeyz last updated on 20/Mar/21 $$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{9}}}{dx} \\ $$ Answered by liberty last updated on 20/Mar/21 $$\int\:{x}^{\mathrm{2}} \:\left(\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{9}}}\right){dx} \\…
Question Number 136303 by SOMEDAVONG last updated on 20/Mar/21 $$\mathrm{If}\:\mathrm{x}^{\mathrm{3}} −\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:\mathrm{1}\:.\mathrm{compute}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\mathrm{x}^{\mathrm{6}} −\:\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\mathrm{x}^{\mathrm{6}} }\:=\:? \\ $$ Answered by mr W last updated on 20/Mar/21 $${x}^{\mathrm{6}}…
Question Number 70756 by MJS last updated on 07/Oct/19 $$\mathrm{I}\:\mathrm{cannot}\:\mathrm{understand}\:\mathrm{all}\:\mathrm{those}\:\mathrm{who}\:\mathrm{post} \\ $$$$\mathrm{questions}\:\mathrm{like}\:\int{x}^{\Gamma\left({x}^{\mathrm{2}} \right)} \mathrm{cos}\:\sqrt[{{x}}]{\mathrm{log}_{\varpi+{x}} \:{x}^{\mathrm{2}\pi\mathrm{i}} }{dx}=? \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{few}\:\mathrm{minutes}\:\mathrm{later}\:\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{2}+\mathrm{1}}{\mathrm{9}−\mathrm{4}}=? \\ $$$$\mathrm{I}\:\mathrm{mean},\:\mathrm{are}\:\mathrm{you}\:\mathrm{serious}? \\ $$ Commented by Rio…
Question Number 136263 by PHANPISEY last updated on 20/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 70710 by oyemi kemewari last updated on 07/Oct/19 $$\mathrm{pleace}\:\mathrm{how}\:\mathrm{can}\:\mathrm{link}\:\mathrm{this}\: \\ $$$$\mathrm{app}\:\mathrm{to}\:\mathrm{my}\:\mathrm{telegram} \\ $$ Answered by $@ty@m123 last updated on 07/Oct/19 $${Sorry}. \\ $$$${There}\:{is}\:{no}\:{way}\:{to}\:{link}\:{any}\:{app}\:{to}\:…
Question Number 70713 by oyemi kemewari last updated on 07/Oct/19 $$\mathrm{can}\:\mathrm{i}\:\mathrm{login}\:\mathrm{to}\:\mathrm{my}\:\mathrm{account}\: \\ $$$$\mathrm{with}\:\mathrm{other}\:\mathrm{phone}?\:\mathrm{if}\:\mathrm{so}\:\mathrm{how} \\ $$ Commented by Tinku Tara last updated on 07/Oct/19 Set password and use that to login from a different phone Terms…
Question Number 136243 by Khalmohmmad last updated on 19/Mar/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}−{x}}{\mathrm{tan}{x}−{x}}=? \\ $$ Answered by EDWIN88 last updated on 20/Mar/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{1}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}} \\…