Menu Close

Category: None

If-2-x-0-find-x-

Question Number 69944 by otchereabdullai@gmail.com last updated on 29/Sep/19 $$\mathrm{If}\:\mathrm{2}^{\mathrm{x}} \:=\mathrm{0}\:\:\:\:\:\mathrm{find}\:\:\mathrm{x} \\ $$ Commented by otchereabdullai@gmail.com last updated on 29/Sep/19 $$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ Commented by…

help-me-S-1-2-2-3-2-4-5-2-6-2-7-2-8-2-9-2-10-2-11-2-12-2-n-2-n-1-2-n-2-2-2-n-3-2-

Question Number 135459 by Abdoulaye last updated on 13/Mar/21 $${help}\:{me} \\ $$$$ \\ $$$${S}=\left(\mathrm{1}−\mathrm{2}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} +\mathrm{4}\right)+\left(\mathrm{5}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} \right)+\left(\mathrm{9}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} −\mathrm{11}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} \right)+ \\…

xy-3-y-Find-dy-dx-

Question Number 69912 by naka3546 last updated on 29/Sep/19 $$\sqrt{{xy}}\:\:+\:\:\mathrm{3}\:\:=\:\:{y} \\ $$$${Find}\:\:\frac{{dy}}{{dx}}\:\:. \\ $$ Answered by MJS last updated on 29/Sep/19 $$\frac{{y}}{\mathrm{2}\sqrt{{xy}}}{dx}+\frac{{x}}{\mathrm{2}\sqrt{{xy}}}{dy}={dy} \\ $$$$\frac{{y}}{\mathrm{2}\sqrt{{xy}}}{dx}=\left(\mathrm{1}−\frac{{x}}{\mathrm{2}\sqrt{{xy}}}\right){dy} \\…

Notifications-are-working-now-We-are-still-working-on-other-issues-No-app-update-is-needed-The-changes-were-only-on-server-side-

Question Number 69906 by Tinku Tara last updated on 28/Sep/19 $$\mathrm{Notifications}\:\mathrm{are}\:\mathrm{working}\:\mathrm{now}. \\ $$$$\mathrm{We}\:\mathrm{are}\:\mathrm{still}\:\mathrm{working}\:\mathrm{on}\:\mathrm{other}\:\mathrm{issues}. \\ $$$$ \\ $$$$\mathrm{No}\:\mathrm{app}\:\mathrm{update}\:\mathrm{is}\:\mathrm{needed}.\:\mathrm{The}\:\mathrm{changes} \\ $$$$\mathrm{were}\:\mathrm{only}\:\mathrm{on}\:\mathrm{server}\:\mathrm{side}. \\ $$ Commented by ajfour last…

Question-135437

Question Number 135437 by 0731619177 last updated on 13/Mar/21 Answered by EDWIN88 last updated on 13/Mar/21 $$\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{4x}−\mathrm{2sin}\:\mathrm{2x}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}}{\mathrm{4x}^{\mathrm{3}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{cos}\:\mathrm{2x}}.\underset{{x}\rightarrow\mathrm{0}}…