Question Number 134031 by Algoritm last updated on 26/Feb/21 Commented by Dwaipayan Shikari last updated on 26/Feb/21 $${Q}\:\mathrm{133859} \\ $$ Terms of Service Privacy Policy…
Question Number 134020 by jahar last updated on 26/Feb/21 $${how}\:{to}\:{write}\:\boldsymbol{{pancham}}\:{in}\:{bengali}.\:{please}\:{help} \\ $$ Commented by Dwaipayan Shikari last updated on 26/Feb/21 $$ \\ $$ Commented by…
Question Number 134009 by mathocean1 last updated on 26/Feb/21 $${E}\:{is}\:{a}\:{vec}\:{torial}\:{space}\:{which}\:{has}\:{as} \\ $$$${base}\:\mathscr{B}=\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}},\overset{\rightarrow} {{k}}\right).\:{f}:\:{E}\rightarrow{E}\:{is}\:{a}\:{linear} \\ $$$${application}\:{such}\:{that} \\ $$$${f}\left(\overset{\rightarrow} {{i}}\right)=−\overset{\rightarrow} {{i}}+\mathrm{2}\overset{\rightarrow} {{k}};\:{f}\left(\overset{\rightarrow} {{j}}\right)=\overset{\rightarrow} {{j}}+\mathrm{2}\overset{\rightarrow} {{k}}\:{and}…
Question Number 2941 by Syaka last updated on 30/Nov/15 $$\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{5}}{\mathrm{8}}\:+\:\frac{\mathrm{7}}{\mathrm{16}}\:+\:…….\:=\:\:? \\ $$ Commented by Syaka last updated on 01/Dec/15 $${Thanks}\:{for}\:{Solution}\:{Sir}\:{Rasheed} \\ $$$${and}\:{also}\:{for}\:{Solved}\:{from}\:{Sir}\:{Yozzi}.\:{Like}\:{that}. \\ $$ Answered…
Question Number 68473 by naka3546 last updated on 11/Sep/19 $$\frac{\mathrm{sin}\:\mathrm{72}°}{\mathrm{sin}\:\mathrm{42}°}\:\:=\:\:{p} \\ $$$$\mathrm{tan}\:\mathrm{12}°\:\:=\:\:? \\ $$ Commented by Kunal12588 last updated on 11/Sep/19 $$\frac{{sin}\left(\mathrm{60}°+\mathrm{12}°\right)}{{sin}\left(\mathrm{30}°+\mathrm{12}°\right)}={p} \\ $$$$\Rightarrow\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\mathrm{12}°+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{12}°}{\frac{\mathrm{1}}{\mathrm{2}}{cos}\mathrm{12}°+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{sin}\mathrm{12}°}={p} \\…
Question Number 134008 by AbderrahimMaths last updated on 26/Feb/21 $$\:\:\:\:{we}\:{consider}\:{that}\:{application}\:{n}\geqslant\mathrm{1} \\ $$$$\:\:{det}\::\:{M}_{{n}} \left(\mathbb{R}\right)\rightarrow\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A} {det}\left({A}\right) \\ $$$$\mathrm{1}−{verify}\:{that}\:\forall{H}\in{M}_{{n}} \left(\mathbb{R}\right)\:{and}\:{t}\in\mathbb{R} \\ $$$$\:{if}\:{A}={I}_{{n}} \Rightarrow{det}\left({A}+{tH}\right)=\mathrm{1}+{t}.{Tr}\left({H}\right)+\circ\left({t}\right) \\ $$$$\mathrm{2}−{suppose}\:{that}:\:{A}\in{GL}_{{n}} \left(\mathbb{R}\right)…
Question Number 134006 by mohammad17 last updated on 26/Feb/21 Answered by malwan last updated on 26/Feb/21 $$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{4}} {{lim}}\:\frac{\mathrm{2}{x}−\mathrm{5}}{\mathrm{3}}\:=\:\frac{\mathrm{2}×\mathrm{4}−\mathrm{5}}{\mathrm{3}}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow−\mathrm{3}^{+} } {{lim}}\:\frac{\sqrt{{x}+\mathrm{4}}\:−\sqrt{−{x}−\mathrm{2}}}{\:\sqrt{{x}+\mathrm{3}}}×\frac{\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{−{x}−\mathrm{2}}}{\:\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{−{x}−\mathrm{2}}} \\ $$$$=\:\underset{{x}\rightarrow−\mathrm{3}^{+} }…
Question Number 2931 by Filup last updated on 30/Nov/15 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{double}\:\mathrm{factorial}\:\mathrm{function}? \\ $$$${i}.{e}.\:\:\:\:\:{x}!! \\ $$ Answered by 123456 last updated on 30/Nov/15 $${x}!!={x}\left({x}−\mathrm{2}\right)!!,{x}\in\mathbb{N} \\ $$$$\mathrm{0}!!=\mathrm{1} \\…
Question Number 2932 by Filup last updated on 30/Nov/15 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{subfactorial}\:\mathrm{function}? \\ $$$${i}.{e}.\:\:\:\:\:!{x} \\ $$ Commented by 123456 last updated on 30/Nov/15 $$\mathrm{number}\:\mathrm{of}\:\mathrm{dessaragment} \\ $$ Commented…
Question Number 133980 by mohammad17 last updated on 26/Feb/21 Answered by mr W last updated on 26/Feb/21 $$\frac{\partial{p}}{\partial{x}}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{p}}{\partial{y}}=\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…