Menu Close

Category: None

Question-133905

Question Number 133905 by mohammad17 last updated on 25/Feb/21 Answered by Dwaipayan Shikari last updated on 25/Feb/21 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{y}^{\mathrm{2}} }{\mathrm{4}}} {dxdy}…

1-x-1-y-lim-x-1-x-tan-1-2x-2-

Question Number 68368 by naka3546 last updated on 09/Sep/19 $$\frac{\mathrm{1}}{{x}+\mathrm{1}}\:=\:{y} \\ $$$$\underset{{x}+\mathrm{1}\:\rightarrow\:\infty} {\mathrm{lim}}\:\:{x}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right) \\ $$ Commented by kaivan.ahmadi last updated on 09/Sep/19 $${x}+\mathrm{1}\rightarrow\infty\Rightarrow{x}\rightarrow\infty \\ $$$${and}\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\rightarrow\mathrm{0}\Rightarrow{tan}\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)\approx\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}…

an-object-placed-20cm-from-a-converging-lens-forms-a-magnified-clear-image-on-a-screen-when-the-lens-is-moved-20cm-towards-the-screen-a-smaller-clear-image-is-formed-on-the-screen-calculate-the-fo

Question Number 133860 by aurpeyz last updated on 24/Feb/21 $${an}\:{object}\:{placed}\:\mathrm{20}{cm}\:{from}\:{a}\:{converging} \\ $$$${lens}\:{forms}\:{a}\:{magnified}\:{clear}\:{image} \\ $$$${on}\:{a}\:{screen}.\:{when}\:{the}\:{lens}\:{is}\:{moved} \\ $$$$\mathrm{20}{cm}\:{towards}\:{the}\:{screen}.\:{a}\:{smaller} \\ $$$${clear}\:{image}\:{is}\:{formed}\:{on}\:{the}\:{screen}.\: \\ $$$${calculate}\:{the}\:{forcal}\:{length}\:{of}\:{the} \\ $$$${lens}. \\ $$$$\left({a}\right)\:\mathrm{1}.\mathrm{33} \\…

U-0-1-U-1-2-U-n-2-3-2-U-n-1-1-2-U-n-Determinate-the-smallest-integer-n-0-such-that-n-n-0-we-have-U-n-3-10-4-

Question Number 133856 by mathocean1 last updated on 24/Feb/21 $$ \\ $$$$\begin{cases}{{U}_{\mathrm{0}} =\mathrm{1}}\\{{U}_{\mathrm{1}} =\mathrm{2}}\\{\:{U}_{{n}+\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}}{U}_{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}{U}_{{n}} }\end{cases} \\ $$$${Determinate}\:{the}\:{smallest}\:{integer} \\ $$$${n}_{\mathrm{0}} \:{such}\:{that}\:\forall\:{n}\geqslant{n}_{\mathrm{0}} \:{we}\:{have}\:\mid{U}_{{n}} −\mathrm{3}\mid\leqslant\mathrm{10}^{−\mathrm{4}} \\…

find-n-1-x-n-sin-nx-n-

Question Number 133829 by metamorfose last updated on 24/Feb/21 $${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}}=…? \\ $$ Answered by Dwaipayan Shikari last updated on 24/Feb/21 $${log}\left(\mathrm{1}−{xe}^{{ix}} \right)={log}\left(\sqrt{\left(\mathrm{1}−{xcosx}\right)^{\mathrm{2}}…

find-f-x-if-f-1-x-f-1-x-x-

Question Number 68260 by aliesam last updated on 08/Sep/19 $${find}\:{f}\left({x}\right)\:{if}\: \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$ Commented by Prithwish sen last updated on 08/Sep/19 $$\mathrm{Put}\:\mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}}……\left(\mathrm{i}\right) \\ $$$$\mathrm{Putx}=\:\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\Rightarrow\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)=\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}…..\left(\mathrm{ii}\right)…

if-function-f-satisfy-form-f-x-0-1-f-x-dx-x-2-0-2-f-x-dx-x-0-3-f-x-dx-1-then-the-value-of-f-4-is-

Question Number 2705 by Syaka last updated on 25/Nov/15 $${if}\:{function}\:{f}\:{satisfy}\:{form}\:: \\ $$$${f}\left({x}\right)\:=\:\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right)\:{dx}\right){x}^{\mathrm{2}} \:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right)\:{dx}\right){x}\:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right)\:{dx}\right)\:+\:\mathrm{1} \\ $$$${then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{4}\right)\:{is}…..\:? \\ $$ Answered by…