Menu Close

Category: None

Question-138594

Question Number 138594 by Ar Brandon last updated on 15/Apr/21 Commented by Ar Brandon last updated on 15/Apr/21 $$\mathrm{In}\:\mathrm{honour}\:\mathrm{of}\:\mathrm{Leonhard}\:\mathrm{Euler} \\ $$$$\mathrm{on}\:\mathrm{his}\:\mathrm{314}^{\mathrm{th}} \:\mathrm{anniversary}. \\ $$ Commented…

Given-r-t-j-gt-0-and-n-1-Prove-that-p-1-1-n-p-1-r-r-p-2-1-n-p-2-t-t-2-n-2-n-r-t-n-r-n-t-n-t-n-r-n-rt-p-2-1-n-p-2-t-t-p-3-1-n-p

Question Number 7507 by Master Moon last updated on 01/Sep/16 $$\boldsymbol{{Given}}\:\boldsymbol{{r}},\:\boldsymbol{{t}},\:\boldsymbol{{j}}\:>\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{n}}\geqslant\mathrm{1};\:\boldsymbol{{Prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\left[\underset{\boldsymbol{{p}}_{\mathrm{1}} =\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\boldsymbol{{p}}_{\mathrm{1}} ^{\boldsymbol{{r}}} +\boldsymbol{{r}}\right)+\underset{\boldsymbol{{p}}_{\mathrm{2}} =\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\boldsymbol{{p}}_{\mathrm{2}} ^{\boldsymbol{{t}}} +\boldsymbol{{t}}\right)\right]^{\mathrm{2}} }{\boldsymbol{{n}}^{\mathrm{2}} \left[\left(\boldsymbol{{n}}!\right)^{\frac{\boldsymbol{{r}}+\boldsymbol{{t}}}{\boldsymbol{{n}}}}…

find-x-x-2-2-x-1-Any-help-

Question Number 138575 by KwesiDerek last updated on 15/Apr/21 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}^{\boldsymbol{\mathrm{x}}} =\mathrm{1} \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}} \\ $$ Commented by soudo last updated on 15/Apr/21…

This-app-is-now-free-as-several-users-do-not-have-cards-and-are-not-able-to-upgrade-Manual-entry-in-backend-system-had-put-lot-of-overhead-Hence-we-have-decide-to-make-this-app-free-We-issued-sever

Question Number 138536 by Tinku Tara last updated on 14/Apr/21 $$\mathrm{This}\:\mathrm{app}\:\mathrm{is}\:\mathrm{now}\:\mathrm{free}\:\mathrm{as}\:\mathrm{several}\:\mathrm{users} \\ $$$$\mathrm{do}\:\mathrm{not}\:\mathrm{have}\:\mathrm{cards}\:\mathrm{and}\:\mathrm{are}\:\mathrm{not}\:\mathrm{able} \\ $$$$\mathrm{to}\:\mathrm{upgrade}.\:\mathrm{Manual}\:\mathrm{entry}\:\mathrm{in}\:\mathrm{backend} \\ $$$$\mathrm{system}\:\mathrm{had}\:\mathrm{put}\:\mathrm{lot}\:\mathrm{of}\:\mathrm{overhead}. \\ $$$$\mathrm{Hence}\:\mathrm{we}\:\mathrm{have}\:\mathrm{decide}\:\mathrm{to}\:\mathrm{make}\:\mathrm{this} \\ $$$$\mathrm{app}\:\mathrm{free}. \\ $$$$\mathrm{We}\:\mathrm{issued}\:\mathrm{several}\:\mathrm{refunds}\:\mathrm{for}\:\mathrm{users} \\ $$$$\mathrm{who}\:\mathrm{had}\:\mathrm{bought}.\:\mathrm{However}\:\mathrm{Google}…

The-acute-angle-of-the-rectangle-trapezius-is-equal-to-90-arcsin0-1-The-bases-measure-10-and-30-Calculate-the-area-of-the-trapezius-

Question Number 72998 by yannickmendes_33 last updated on 05/Nov/19 $${The}\:{acute}\:{angle}\:{of}\:{the}\:{rectangle}\:{trapezius}\:{is}\:{equal}\:{to}\:\alpha=\mathrm{90}°{arcsin}\mathrm{0}.\mathrm{1} \\ $$$${The}\:{bases}\:{measure}\:\mathrm{10}\:{and}\:\mathrm{30}.\:{Calculate}\:{the}\:{area}\:{of}\:{the}\:{trapezius}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

The-area-of-the-equilateral-triangle-is-equal-to-16-8-3-pi-Calculate-the-area-of-the-circle-inscribed-in-the-triangle-

Question Number 72997 by yannickmendes_33 last updated on 05/Nov/19 $${The}\:{area}\:{of}\:{the}\:{equilateral}\:{triangle}\:{is}\:{equal}\:{to}\:\frac{\sqrt{\mathrm{16}}\sqrt{\mathrm{8}}}{\mathrm{3}\sqrt{\pi}} \\ $$$${Calculate}\:{the}\:{area}\:{of}\:{the}\:{circle}\:{inscribed}\:{in}\:{the}\:{triangle}. \\ $$$$\: \\ $$ Answered by Kunal12588 last updated on 05/Nov/19 $${area}\:{of}\:{equilateral}\:\bigtriangleup\:=\:\frac{\sqrt{\mathrm{3}}\:{a}^{\mathrm{2}} }{\mathrm{4}}=\frac{\sqrt{\mathrm{16}}\sqrt{\mathrm{8}}}{\mathrm{3}\sqrt{\pi}}=\frac{\mathrm{8}\sqrt{\mathrm{2}}}{\mathrm{3}\sqrt{\pi}}…