Question Number 133829 by metamorfose last updated on 24/Feb/21 $${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}}=…? \\ $$ Answered by Dwaipayan Shikari last updated on 24/Feb/21 $${log}\left(\mathrm{1}−{xe}^{{ix}} \right)={log}\left(\sqrt{\left(\mathrm{1}−{xcosx}\right)^{\mathrm{2}}…
Question Number 68260 by aliesam last updated on 08/Sep/19 $${find}\:{f}\left({x}\right)\:{if}\: \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$ Commented by Prithwish sen last updated on 08/Sep/19 $$\mathrm{Put}\:\mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}}……\left(\mathrm{i}\right) \\ $$$$\mathrm{Putx}=\:\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\Rightarrow\mathrm{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)=\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}…..\left(\mathrm{ii}\right)…
Question Number 133804 by mr W last updated on 24/Feb/21 Commented by Dwaipayan Shikari last updated on 24/Feb/21 $${Beautiful}\:{fractals}… \\ $$ Commented by bramlexs22 last…
Question Number 2705 by Syaka last updated on 25/Nov/15 $${if}\:{function}\:{f}\:{satisfy}\:{form}\:: \\ $$$${f}\left({x}\right)\:=\:\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right)\:{dx}\right){x}^{\mathrm{2}} \:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right)\:{dx}\right){x}\:+\:\left(\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right)\:{dx}\right)\:+\:\mathrm{1} \\ $$$${then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{4}\right)\:{is}…..\:? \\ $$ Answered by…
Question Number 133773 by mohammad17 last updated on 24/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133772 by mathocean1 last updated on 24/Feb/21 $${Three}\:{devices}\:{A};\:{B}\:;{C}\:{shine}\:{like}\:{that}: \\ $$$${A}\:{shines}\:{every}\:\mathrm{25}\:{minutes} \\ $$$${B}\:{shines}\:{every}\:\mathrm{30}\:{minutes} \\ $$$${C}\:{shines}\:{every}\:\mathrm{35}\:{minutes}. \\ $$$${The}\:{three}\:{devices}\:{shined}\:{simultaneous}, \\ $$$$\left({at}\:{the}\:{same}\:{time}\right)\:{at}\:\mathrm{10}\:{pm}. \\ $$$${At}\:{which}\:{time}\:{will}\:{they}\:{shine}\:{simultaneous}\: \\ $$$${for}\:{the}\:{first}\:{time}\:{after}\:{midnight}? \\…
Question Number 68236 by smartsmith459@gmail.com last updated on 07/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68237 by smartsmith459@gmail.com last updated on 07/Sep/19 $$\mathrm{1}.\:{find}\:{the}\:{equation}\:{of}\:{the}\:{line}\:{making}\:{an}\:{angle}\:{of}\:\mathrm{135}^{°\:} {with}\:{O}_{{x}\:} \:{and}\:{passing}\:{through}\:{thepoints}?\left(−\mathrm{2},\mathrm{5}\right) \\ $$$$\mathrm{2}.\:{find}\:{the}\:{slope}\:{of}\:{the}\:{line}\:{through}\:{the}\:{points}\:\left(\mathrm{5},\mathrm{3}\right){and}\:\left(\mathrm{7},\mathrm{2}\right).\:{find}\:\left({i}\right)\:{the}\:{perpendicular}\:{form}\:\left({ii}\right)\:{find}\:{the}\:{intercept}\:{form}\:{of}\:{its}\:{equation}. \\ $$$$\mathrm{3}.\:{Determine}\:{the}\:{gradient}\:{of}\:{the}\:{straight}\:{line}\:{graph}\:{passing}\:{through}\:{the}\:{co}-{ordinates}: \\ $$$$\left({i}\right)\:\left(\mathrm{2},\mathrm{7}\right)\:{and}\:\left(−\mathrm{3},\mathrm{4}\right) \\ $$$$\left({ii}\right)\:\left(\frac{\mathrm{1}\:}{\mathrm{4}},\:\frac{-\mathrm{3}}{\mathrm{4}}\right)\:{and}\:\left(\frac{-\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{5}}{\mathrm{8}}\right). \\ $$ Commented by kaivan.ahmadi…
Question Number 68226 by Tinku Tara last updated on 07/Sep/19 $$\mathrm{We}\:\mathrm{are}\:\mathrm{working}\:\mathrm{on}\:\mathrm{problems} \\ $$$$\mathrm{reported}\:\mathrm{on}\:\mathrm{post}\:\mathrm{67927}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{update}\:\mathrm{on}\:\mathrm{the}\:\mathrm{resolution} \\ $$$$\mathrm{as}\:\mathrm{soon}\:\mathrm{as}\:\mathrm{possible}. \\ $$ Commented by Rasheed.Sindhi last…
Question Number 133734 by Abdoulaye last updated on 23/Feb/21 $${how}\:{do}\:{we}\:{caculate}\:\int{ln}\left({tanx}\right){dx}\:? \\ $$ Answered by mathmax by abdo last updated on 24/Feb/21 $$\mathrm{f}\left(\mathrm{x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{x}} \mathrm{ln}\left(\mathrm{tanx}\right)\mathrm{dx}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\mathrm{tanx}=\mathrm{t}} \:\:\:\int_{\mathrm{1}}…