Question Number 132644 by aurpeyz last updated on 15/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67108 by otchereabdullai@gmail.com last updated on 22/Aug/19 $$\mathrm{Three}\:\mathrm{school}\:\mathrm{children}\:\mathrm{share}\:\mathrm{some}\: \\ $$$$\mathrm{oranges}\:\mathrm{as}\:\mathrm{follows}:\:\mathrm{Akwasi}\:\mathrm{gets}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{shared} \\ $$$$\mathrm{between}\:\mathrm{Abena}\:\mathrm{and}\:\mathrm{Juana}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\mathrm{2}:\:\mathrm{3}\:.\:\mathrm{If}\:\mathrm{Abena}\:\mathrm{gets}\:\mathrm{24}\:\mathrm{oranges}\:,\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{does}\:\mathrm{Akwasi}\:\mathrm{get}. \\ $$ Commented by Prithwish…
Question Number 132647 by aurpeyz last updated on 15/Feb/21 Answered by Dwaipayan Shikari last updated on 15/Feb/21 $$\int\frac{\mathrm{1}}{\:\sqrt{{x}}\left(\sqrt{{x}}+\mathrm{7}\right)}{dx}\:\:\:\:\:\:\:\:{x}={t}^{\mathrm{2}} \\ $$$$=\mathrm{2}\int\frac{\mathrm{1}}{{t}+\mathrm{7}}{dt}=\mathrm{2}{log}\left({t}+\mathrm{7}\right)+{C}={log}\left(\sqrt{{x}}+\mathrm{7}\right)^{\mathrm{2}} +{C} \\ $$ Answered by…
Question Number 132641 by aurpeyz last updated on 15/Feb/21 $$\int\frac{\mathrm{1}}{{e}^{{x}} +\mathrm{9}{e}^{−{x}} }{dx} \\ $$ Answered by MJS_new last updated on 15/Feb/21 $${t}=\mathrm{e}^{{x}} \:\rightarrow\:{dx}=\frac{{dt}}{{t}} \\ $$$$\int\frac{{dt}}{{t}^{\mathrm{2}}…
Question Number 132643 by aurpeyz last updated on 15/Feb/21 Commented by mr W last updated on 15/Feb/21 $${question}\:{not}\:{clear}! \\ $$$$…\:{t}=\mathrm{1}\:{and}\:{what}? \\ $$ Commented by aurpeyz…
Question Number 1566 by 112358 last updated on 20/Aug/15 $${How}\:{does}\:{one}\:{use}\:{the}\:{following} \\ $$$${notation}?\:{It}'{s}\:{new}\:{to}\:{my}\: \\ $$$${understanding}\:{of}\:{using}\:{only} \\ $$$${one}\:{sigma}\:{sign}. \\ $$$${For}\:{e}.{g}\:\:\:\:\:\:\:\:\underset{{j}=\mathrm{1}} {\overset{{m}} {\sum}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}+\mathrm{1}\right)\left({j}−\mathrm{1}\right) \\ $$ Commented…
Question Number 132633 by mohammad17 last updated on 15/Feb/21 $${find}\:{all}\:{value}\:{of}\:{z}\:{its}\:{saytisfies}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{z}−{z}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}{z}}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\mathrm{4}^{{n}+\mathrm{2}} } \\ $$ Answered by TheSupreme last updated on…
Question Number 132635 by mohammad17 last updated on 15/Feb/21 $${where}\:{is}\:{to}\:{be}\:{the}\:{function}\: \\ $$$${f}\left({z}\right)={zRez}+\overset{−} {{z}Imz}+\overset{−} {{z}}\:{diffrentable}\:{and} \\ $$$${find}\:{the}\:{dervaitive}? \\ $$ Commented by mohammad17 last updated on 16/Feb/21…
Question Number 132632 by mohammad17 last updated on 15/Feb/21 $${Solve}\:{the}\:{equation}\:{z}^{\mathrm{3}} ={z}_{°} \\ $$$${z}={x}+{iy}\:,{z}_{°} =\left({x}_{°} +{iy}_{°} \right) \\ $$ Answered by TheSupreme last updated on 15/Feb/21…
Question Number 132620 by Tinku Tara last updated on 15/Feb/21 $$\mathrm{Reported}\:\mathrm{Issues} \\ $$$$\bullet\:\mathrm{text}\:\mathrm{extends}\:\mathrm{to}\:\mathrm{infinity} \\ $$$$\:\:\:\mathrm{problem}\:\mathrm{seen}.\:\mathrm{Will}\:\mathrm{fix}. \\ $$$$\bullet\:\mathrm{autosave}\:\mathrm{when}\:\mathrm{switching}\:\mathrm{app}. \\ $$$$\:\:\:\:\mathrm{this}\:\mathrm{is}\:\mathrm{already}\:\mathrm{present}\:\mathrm{so}\:\mathrm{if}\:\mathrm{you} \\ $$$$\:\:\:\:\mathrm{answer}\:\mathrm{a}\:\mathrm{phone}\:\mathrm{call}\:\mathrm{or}\:\mathrm{switch} \\ $$$$\:\:\:\:\mathrm{the}\:\mathrm{post}\:\mathrm{should}\:\mathrm{remain}.\: \\ $$$$\:\:\:\:\mathrm{will}\:\mathrm{check}\:\mathrm{again}\:\mathrm{and}\:\mathrm{address}.…