Menu Close

Category: None

if-f-4xy-2y-f-x-y-f-x-y-and-f-5-3-what-is-the-value-of-f-2015-

Question Number 2300 by Syaka last updated on 14/Nov/15 $${if}\:{f}\left(\mathrm{4}{xy}\right)\:=\:\mathrm{2}{y}\left({f}\left({x}\:−\:{y}\right)\:+\:{f}\left({x}\:+\:{y}\right)\right)\:{and}\:{f}\left(\mathrm{5}\right)\:=\:\mathrm{3} \\ $$$${what}\:{is}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{2015}\right)\:=\:? \\ $$ Commented by Rasheed Soomro last updated on 17/Nov/15 $$\mathcal{EXCELLENT}\:! \\ $$…

Assuming-that-the-world-population-is-6billion-and-total-world-trip-is-4-8billion-a-what-is-the-country-potential-generation-index-CPGI-of-the-country-b-interprete-your-results-in-a-above-

Question Number 133368 by otchereabdullai@gmail.com last updated on 21/Feb/21 $$\mathrm{Assuming}\:\mathrm{that}\:\mathrm{the}\:\mathrm{world}\:\mathrm{population} \\ $$$$\mathrm{is}\:\mathrm{6billion}\:\mathrm{and}\:\mathrm{total}\:\mathrm{world}\:\mathrm{trip}\:\mathrm{is} \\ $$$$\mathrm{4}.\mathrm{8billion}. \\ $$$$\left(\mathrm{a}\right)\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{country}\:\mathrm{potential}\: \\ $$$$\mathrm{generation}\:\mathrm{index}\:\left(\mathrm{CPGI}\right)\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{country} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{interprete}\:\mathrm{your}\:\mathrm{results}\:\mathrm{in}\:\left(\mathrm{a}\right)\:\mathrm{above}. \\ $$$$ \\…

This-isn-t-a-question-Just-wanted-to-say-that-since-I-joined-here-I-have-learnt-so-much-You-guys-are-awesome-

Question Number 2292 by Filup last updated on 14/Nov/15 $$\mathrm{This}\:\mathrm{isn}'\mathrm{t}\:\mathrm{a}\:\mathrm{question}. \\ $$$$\mathrm{Just}\:\mathrm{wanted}\:\mathrm{to}\:\mathrm{say}\:\mathrm{that}\:\mathrm{since}\:\mathrm{I}\:\mathrm{joined} \\ $$$$\mathrm{here}\:\mathrm{I}\:\mathrm{have}\:\mathrm{learnt}\:\mathrm{so}\:\mathrm{much}.\:\mathrm{You}\:\mathrm{guys} \\ $$$$\mathrm{are}\:\mathrm{awesome}! \\ $$ Answered by Rasheed Soomro last updated on…

Can-you-evaluate-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

Question Number 2286 by Filup last updated on 14/Nov/15 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}}+…+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{…}} \\ $$ Commented by Yozzi last updated on 14/Nov/15 $${u}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}},\:{u}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{1}+{u}_{\mathrm{1}} }…

Question-133341

Question Number 133341 by mohammad17 last updated on 21/Feb/21 Answered by mathmax by abdo last updated on 21/Feb/21 $$\left.\mathrm{1}\right)\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} \:+\mathrm{4x}^{\mathrm{2}} −\mathrm{10}\:\:\:\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=\mathrm{3x}^{\mathrm{2}} \:+\mathrm{8x}\:>\mathrm{0}\:\mathrm{on}\left[\mathrm{1},\mathrm{2}\right]\:\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{increazing} \\ $$$$\mathrm{on}\:\left[\mathrm{1},\mathrm{2}\right]\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{5}−\mathrm{10}=−\mathrm{5}<\mathrm{0}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{2}\right)=\mathrm{8}+\mathrm{16}−\mathrm{10}=\mathrm{14}>\mathrm{0}\:\Rightarrow…

With-linear-functions-f-x-and-g-x-if-f-x-g-x-then-m-f-m-g-1-where-m-i-is-the-gradient-of-function-i-x-Does-that-therefore-mean-that-if-given-function-including-non-linear-f-x-f-x

Question Number 2249 by Filup last updated on 11/Nov/15 $$\mathrm{With}\:\mathrm{linear}\:\mathrm{functions}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right), \\ $$$$\mathrm{if}\:{f}\left({x}\right)\bot{g}\left({x}\right),\:\mathrm{then}: \\ $$$${m}_{{f}} {m}_{{g}} =−\mathrm{1}\:\:\:\:\mathrm{where}\:{m}_{{i}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{gradient} \\ $$$$\mathrm{of}\:\mathrm{function}\:{i}\left({x}\right). \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{therefore}\:\mathrm{mean}\:\mathrm{that},\:\mathrm{if}\:\mathrm{given} \\ $$$$\mathrm{function}\:\left(\mathrm{including}\:\mathrm{non}−\mathrm{linear}\right)\:{f}\left({x}\right),…