Menu Close

Category: None

x-x-x-2x-20-x-x-

Question Number 66890 by hmamarques1994@gmail.com last updated on 20/Aug/19 $$\: \\ $$$$\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:+\:\boldsymbol{\mathrm{x}}^{\mathrm{2}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{20} \\ $$$$\: \\ $$$$\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:=\:? \\ $$$$\: \\ $$ Answered by…

to-Tinkutara-strange-error-try-to-edit-comment-my-answer-to-question-132402-the-last-line-expands-in-height-to-infinity-at-least-on-my-device-

Question Number 132418 by MJS_new last updated on 14/Feb/21 $$\mathrm{to}\:\mathrm{Tinkutara} \\ $$$$\mathrm{strange}\:\mathrm{error}.\:\mathrm{try}\:\mathrm{to}\:\mathrm{edit}/\mathrm{comment}\:\mathrm{my} \\ $$$$\mathrm{answer}\:\mathrm{to}\:\mathrm{question}\:\mathrm{132402} \\ $$$$\mathrm{the}\:\mathrm{last}\:\mathrm{line}\:\mathrm{expands}\:\mathrm{in}\:\mathrm{height}\:\mathrm{to}\:\mathrm{infinity} \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{on}\:\mathrm{my}\:\mathrm{device}… \\ $$ Commented by mr W last…

X-F-X-X-C-F-X-C-can-be-plotted-in-R-2-Im-on-Y-Real-on-X-axes-as-a-directed-line-segment-X-F-X-This-has-the-advantage-of-showing-vector-ffields-fixed-points-and-bifurcat

Question Number 1255 by e.nolley@ieee.org last updated on 18/Jul/15 $$\left(\mathrm{X},\mathrm{F}\left(\mathrm{X}\right)\right),\:\mathrm{X}\in{C},\:\mathrm{F}\left(\mathrm{X}\right)\in{C},\:\:\mathrm{can}\:\mathrm{be}\:\: \\ $$$$\mathrm{plotted}\:\mathrm{in}\:\mathrm{R}^{\mathrm{2}} \:\left(\mathrm{Im}\:\mathrm{on}\:\mathrm{Y},\:\mathrm{Real}\:\mathrm{on}\:\mathrm{X}\right. \\ $$$$\left.\mathrm{axes}\right)\:\mathrm{as}\:\mathrm{a}\:\mathrm{directed}\:\mathrm{line}\:\mathrm{segment}, \\ $$$$\overset{} {\:}\overset{} {\left(\mathrm{X}\right)−−\gg\left(\mathrm{F}\left(\mathrm{X}\right)\right)}.\:\mathrm{This}\:\mathrm{has} \\ $$$$\mathrm{the}\:\mathrm{advantage}\:\mathrm{of}\:\mathrm{showing}\:\mathrm{vector}\: \\ $$$$\mathrm{ffields},\:\mathrm{fixed}\:\mathrm{points}\:\mathrm{and}\:\mathrm{bifurcations}. \\ $$$$…

Question-132303

Question Number 132303 by mohammad17 last updated on 13/Feb/21 Answered by EDWIN88 last updated on 13/Feb/21 $$\:\overset{\rightarrow} {\mathrm{a}}=\left(−\mathrm{1},\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\:,\:\mathrm{1}\right)\: \\ $$$$\:\overset{\rightarrow} {\mathrm{b}}=\left(−\mathrm{3},\:−\mathrm{5ln}\:\mathrm{2},\:−\mathrm{4}\right) \\ $$$$\:\overset{\rightarrow} {\mathrm{c}}=\:\left(\mathrm{4},\:−\mathrm{5},\:\mathrm{5}\:\right)\: \\…

Question-132292

Question Number 132292 by Algoritm last updated on 13/Feb/21 Answered by mathmax by abdo last updated on 13/Feb/21 $$\frac{\mathrm{1}}{\left[\mathrm{x}\right]}+\frac{\mathrm{1}}{\left[\mathrm{2x}\right]}=\left[\mathrm{x}\right]+\frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{let}\:\left[\mathrm{x}\right]=\mathrm{n}\:\Rightarrow\mathrm{n}\leqslant\mathrm{x}<\mathrm{n}+\mathrm{1}\:\Rightarrow\mathrm{2n}\leqslant\mathrm{2x}<\mathrm{2n}+\mathrm{2} \\ $$$$\mathrm{if}\:\mathrm{2x}\in\left[\mathrm{2n},\mathrm{2n}+\mathrm{1}\left[\:\Rightarrow\mathrm{x}\in\left[\mathrm{n},\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\left[\:\Rightarrow\left[\mathrm{2x}\right]=\mathrm{2n}\right.\right.\right.\right. \\ $$$$\mathrm{e}\Rightarrow\frac{\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{2n}}=\mathrm{n}+\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\frac{\mathrm{3}}{\mathrm{2n}}=\mathrm{n}+\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\frac{\mathrm{9}}{\mathrm{2n}}=\mathrm{3n}+\mathrm{1}\:\Rightarrow\mathrm{9}=\mathrm{2n}\left(\mathrm{3n}+\mathrm{1}\right)\:\Rightarrow \\ $$$$\mathrm{6n}^{\mathrm{2}}…

Question-66759

Question Number 66759 by aliesam last updated on 19/Aug/19 Commented by mr W last updated on 19/Aug/19 $${question}\:{is}\:{wrong}. \\ $$$${there}\:{is}\:{no}\:{x}\:{which}\:{fulfills}\:\mid\frac{\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\mid>\mathrm{2}, \\ $$$${but}\:{such}\:{that}\:{e}^{{x}} >\mathrm{2016},\:{x}>\mathrm{ln}\:\mathrm{2016}\approx\mathrm{7}.\mathrm{6} \\…