Menu Close

Category: None

Reported-Issues-text-extends-to-infinity-problem-seen-Will-fix-autosave-when-switching-app-this-is-already-present-so-if-you-answer-a-phone-call-or-switch-the-post-should-remain-

Question Number 132620 by Tinku Tara last updated on 15/Feb/21 $$\mathrm{Reported}\:\mathrm{Issues} \\ $$$$\bullet\:\mathrm{text}\:\mathrm{extends}\:\mathrm{to}\:\mathrm{infinity} \\ $$$$\:\:\:\mathrm{problem}\:\mathrm{seen}.\:\mathrm{Will}\:\mathrm{fix}. \\ $$$$\bullet\:\mathrm{autosave}\:\mathrm{when}\:\mathrm{switching}\:\mathrm{app}. \\ $$$$\:\:\:\:\mathrm{this}\:\mathrm{is}\:\mathrm{already}\:\mathrm{present}\:\mathrm{so}\:\mathrm{if}\:\mathrm{you} \\ $$$$\:\:\:\:\mathrm{answer}\:\mathrm{a}\:\mathrm{phone}\:\mathrm{call}\:\mathrm{or}\:\mathrm{switch} \\ $$$$\:\:\:\:\mathrm{the}\:\mathrm{post}\:\mathrm{should}\:\mathrm{remain}.\: \\ $$$$\:\:\:\:\mathrm{will}\:\mathrm{check}\:\mathrm{again}\:\mathrm{and}\:\mathrm{address}.…

Let-a-b-R-Show-that-a-b-a-b-

Question Number 1543 by 112358 last updated on 17/Aug/15 $${Let}\:{a},\:{b}\in\mathbb{R}.\:{Show}\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\mid{a}\mid−\mid{b}\mid\mid\leqslant\mid{a}−{b}\mid. \\ $$ Answered by Rasheed Soomro last updated on 18/Aug/15 $$\boldsymbol{\mathrm{Alternative}}\:\boldsymbol{\mathrm{way}}\:,\:\boldsymbol{\mathrm{technically}}\:\boldsymbol{\mathrm{simpler}}. \\ $$$$\mid\mid{a}\mid−\mid{b}\mid\mid\leqslant\mid{a}−{b}\mid………………….\left(\boldsymbol{\mathrm{I}}\right)…

sin-1-xdx-

Question Number 132613 by aurpeyz last updated on 15/Feb/21 $$\int{sin}^{−\mathrm{1}} {xdx} \\ $$ Answered by Dwaipayan Shikari last updated on 15/Feb/21 $${xsin}^{−\mathrm{1}} {x}−\int\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\…

x-2-0-

Question Number 1545 by x-2 last updated on 17/Aug/15 $${x}−\mathrm{2}=\mathrm{0} \\ $$ Answered by 123456 last updated on 17/Aug/15 $${x}−\mathrm{2}=\mathrm{0} \\ $$$${x}−\mathrm{2}+\mathrm{2}=\mathrm{0}+\mathrm{2} \\ $$$${x}=\mathrm{2} \\…

Find-n-1-1-2n-1-4-

Question Number 1539 by 314159 last updated on 17/Aug/15 $$\boldsymbol{\mathrm{Find}}\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)^{\mathrm{4}} }. \\ $$ Answered by 123456 last updated on 17/Aug/15 $$\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}}…