Question Number 66981 by Mr Jor last updated on 21/Aug/19 Commented by Mr Jor last updated on 21/Aug/19 $${In}\:{the}\:{figure}\:{above},{ABCD}\:{is}\:{a} \\ $$$${parallelogram}.{AOC}\:{and}\:{BOD}\: \\ $$$${are}\:{diagonals}\:{of}\:{the}\:{parallologram}. \\ $$$${Show}\:{that}\:{the}\:{diagonals}\:{of}\:{the}\:…
Question Number 66980 by Mr Jor last updated on 21/Aug/19 Commented by Mr Jor last updated on 21/Aug/19 $${The}\:{figure}\:{above}\:{is}\:{a}\:{right}\:{pyramid} \\ $$$${with}\:{a}\:{rectangular}\:{base}\:{ABCD}\:{and} \\ $$$${VO}\:{as}\:{the}\:{height}. \\ $$$${The}\:{vectors}\:\boldsymbol{{AD}}=\boldsymbol{{a}},\boldsymbol{{AB}}=\boldsymbol{{b}}\:{and}\:\boldsymbol{{DV}}=\boldsymbol{{c}}…
Question Number 66979 by Mr Jor last updated on 21/Aug/19 Commented by Mr Jor last updated on 21/Aug/19 $${In}\:{the}\:{figure}\:{above},\:{OC}=\mathrm{3}{CA}\:{and} \\ $$$${OD}=\mathrm{3}{DB}.{By}\:{taking}\:\boldsymbol{{OA}}=\boldsymbol{{a}},\boldsymbol{{OB}} \\ $$$$=\boldsymbol{{b}},{show}\:{that}\:{CB}//{AB}. \\ $$…
Question Number 132514 by mohammad17 last updated on 14/Feb/21 Answered by guyyy last updated on 15/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132515 by mohammad17 last updated on 14/Feb/21 Commented by mohammad17 last updated on 14/Feb/21 $${help}\:{me}\:{sir} \\ $$ Answered by EDWIN88 last updated on…
Question Number 1437 by 112358 last updated on 03/Aug/15 $${Let}\:{f}\left({x}\right)\:{be}\:{a}\:{real}\:{valuedfunction} \\ $$$$\forall{x}\in\mathbb{R}.\:{Determine}\:{the}\:{following} \\ $$$${sums}\:: \\ $$$$\left(\mathrm{1}\right)\:{S}_{\mathrm{1}} \left({n}\right)=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{−\mathrm{1}} \left({rf}\left({x}\right)\right) \\ $$$$\left(\mathrm{2}\right)\:{S}_{\mathrm{2}} \left({n}\right)=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}^{−\mathrm{1}}…
Question Number 66968 by aliesam last updated on 21/Aug/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 132497 by mathocean1 last updated on 14/Feb/21 $${a},\:{b}\:\in\:\mathbb{R}. \\ $$$${Given}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} −{ab}+\mathrm{11}=\mathrm{0} \\ $$$${Show}\:{that}\:−\frac{\mathrm{7}}{\mathrm{3}}<{a}+{b}<−\mathrm{2} \\ $$ Answered by MJS_new last updated on 14/Feb/21…
Question Number 1426 by tabrez8590@gmail last updated on 31/Jul/15 $${why}\:{we}\:{can}\:{not}\:{compare}\:{any}\:{tow}\:{complex}\:{number}\:\: \\ $$$${how}\:{a}\:{cmplex}\:{number}\:{is}\:{uses}\:{a}\:{complex}\:{number}\:{practically}\:{please}\:{giveanexample} \\ $$ Commented by Rasheed Ahmad last updated on 03/Aug/15 $${Things}\:{with}\:{respect}\:{to}\:{single}\: \\ $$$${characteristic}\:{are}\:{easy}\:{to}\:{compare}.…
Question Number 132475 by Study last updated on 14/Feb/21 $${prove}\:{that}\:\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} =−\frac{{b}}{{a}} \\ $$$${x}_{\mathrm{1}} {and}\:{x}_{\mathrm{2}} {are}\:{roots}\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$ Commented by MJS_new last updated on…