Menu Close

Category: None

we-say-that-Log-z-1-z-2-Log-z-1-Log-z-2-when-Re-z-1-0-and-Re-z-2-0-prove-this-

Question Number 132032 by mohammad17 last updated on 10/Feb/21 $${we}\:{say}\:{that}\:{Log}\left({z}_{\mathrm{1}} {z}_{\mathrm{2}} \right)={Log}\left({z}_{\mathrm{1}} \right)+{Log}\left({z}_{\mathrm{2}} \right) \\ $$$${when}:\:{Re}\left({z}_{\mathrm{1}} \right)\leqslant\mathrm{0}\:{and}\:{Re}\left({z}_{\mathrm{2}} \right)\leqslant\mathrm{0} \\ $$$${prove}\:{this}\:? \\ $$ Commented by mohammad17…

lim-x-2-log-x-2-1-log-2-1-x-1-

Question Number 66478 by hmamarques1994@gmail.com last updated on 15/Aug/19 $$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\left[\frac{\boldsymbol{{log}}_{\boldsymbol{{x}}} \left(\mathrm{2}\right)−\mathrm{1}}{\boldsymbol{{log}}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)+\mathrm{1}}\right]=? \\ $$$$\: \\ $$ Commented by gunawan last updated on…

30-you-can-use-this-numbers-1-3-5-7-9-11-13-15-you-also-use-a-number-double-only-genius-is-solve-it-

Question Number 919 by sai dinesh last updated on 24/Apr/15 $$−+−+−=\mathrm{30} \\ $$$${you}\:{can}\:{use}\:{this}\:{numbers}\left(\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{9},\mathrm{11},\mathrm{13},\mathrm{15}\right) \\ $$$${you}\:{also}\:{use}\:{a}\:{number}\:{double} \\ $$$${only}\:{genius}\:{is}\:{solve}\:{it} \\ $$$$ \\ $$ Answered by prakash jain…

Show-that-t-0-x-1-where-x-e-t-2-t-2-2t-2-t-R-

Question Number 915 by 112358 last updated on 24/Apr/15 $${Show}\:{that}\:\forall{t}\geqslant\mathrm{0}\:,\:{x}\leqslant\mathrm{1}\:{where} \\ $$$${x}=\frac{{e}^{−{t}} }{\mathrm{2}}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right)\:\:,\:{t}\in\mathbb{R}.\: \\ $$ Commented by 123456 last updated on 24/Apr/15 $${t}\geqslant\mathrm{0}\Leftrightarrow−{t}\leqslant\mathrm{0}\Leftrightarrow{e}^{−{t}} \leqslant{e}^{\mathrm{0}}…

Show-that-for-the-system-of-equations-x-y-z-3-2x-2y-2z-6-3x-3y-3z-9-the-general-solution-is-given-by-x-1-

Question Number 908 by 112358 last updated on 20/Apr/15 $${Show}\:{that}\:{for}\:{the}\:{system}\:{of}\: \\ $$$${equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+{y}+{z}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}+\mathrm{3}{y}+\mathrm{3}{z}=\mathrm{9} \\ $$$${the}\:{general}\:{solution}\:{is}\:{given}\:{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\lambda+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\mu+\mathrm{1} \\…