Menu Close

Category: None

Determine-x-e-y-x-1-i-1-y-i-i-10-1-xy-i-i-21-

Question Number 66431 by hmamarques1994@gmail.com last updated on 15/Aug/19 $$\: \\ $$$$\:\boldsymbol{\mathrm{Determine}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{y}}: \\ $$$$\: \\ $$$$\:\begin{cases}{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{\mathrm{i}}}}} +\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{10}}\\{\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{xy}}\right)^{\boldsymbol{\mathrm{i}}\sqrt{\boldsymbol{\mathrm{i}}}} }\:=\:\mathrm{21}}\end{cases} \\ $$$$\: \\ $$ Answered by…

lets-f-0-1-R-lets-e-n-0-1-R-lets-a-n-0-1-R-such-that-f-x-i-1-3-a-i-x-e-i-x-0-1-e-i-x-e-j-x-dx-1-i-j-0-i-j-so-0-1-f-x-2-dx-

Question Number 891 by 123456 last updated on 17/Apr/15 $$\mathrm{lets}\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R} \\ $$$$\mathrm{lets}\:{e}_{{n}} :\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R} \\ $$$$\mathrm{lets}\:{a}_{{n}} :\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}{a}_{{i}} \left({x}\right){e}_{{i}} \left({x}\right) \\…

is-there-any-diffrence-btw-060-and-60-0-

Question Number 131924 by aurpeyz last updated on 09/Feb/21 $${is}\:{there}\:{any}\:{diffrence}\:{btw}\:\mathrm{060}\:{and}\:\mathrm{60}^{\mathrm{0}} \\ $$ Answered by physicstutes last updated on 10/Feb/21 $$\mathrm{I}\:\mathrm{think}:\:\mathrm{one}\:\mathrm{just}\:\mathrm{specifies}\:\mathrm{that}\:\mathrm{you}'\mathrm{ve}\:\mathrm{taken}\:\mathrm{it}\:\mathrm{clockwise} \\ $$$$\mathrm{from}\:\mathrm{0}°\:\mathrm{to}\:\mathrm{60}°\:\mathrm{while}\:\mathrm{the}\:\mathrm{other}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{60}°\:\mathrm{could}\:\mathrm{mean}\:\mathrm{clockwise}\:\mathrm{or}\:\mathrm{counter}\:\mathrm{clockwise}\:\mathrm{but}\:\mathrm{if}\:\mathrm{you}\:\mathrm{mean} \\…

Question-66379

Question Number 66379 by Sandy Suhendra last updated on 13/Aug/19 Commented by kaivan.ahmadi last updated on 13/Aug/19 $$={lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{3}{cosx}+\mathrm{5}{cos}\mathrm{3}{x}}{{cot}\mathrm{5}{x}}\:\overset{{hop}} {=} \\ $$$${lim}_{{x}\rightarrow\frac{.\pi}{\mathrm{2}}} \:\:\frac{−\mathrm{3}{sinx}−\mathrm{15}{sin}\mathrm{3}{x}}{−\mathrm{5}\left(\mathrm{1}+{cot}^{\mathrm{2}} \mathrm{5}{x}\right)}=\frac{−\mathrm{3}+\mathrm{15}}{−\mathrm{5}}=−\frac{\mathrm{12}}{\mathrm{5}} \\…