Menu Close

Category: None

jika-dan-adalah-akar-akar-persamaan-x-2-x-1-0-maka-nilai-2013-2301-a-2-c-0-e-2-b-1-d-1-

Question Number 1050 by tera last updated on 23/May/15 $${jika}\:\alpha\:{dan}\:\beta\:{adalah}\:{akar}−{akar} \\ $$$${persamaan}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:{maka}\: \\ $$$${nilai}\:\alpha^{\mathrm{2013}} +\beta^{\mathrm{2301}} =….. \\ $$$${a}.−\mathrm{2}\:\:\:{c}.\mathrm{0}\:\:\:\:{e}.\mathrm{2} \\ $$$$ \\ $$$${b}.−\mathrm{1}\:\:\:{d}.\mathrm{1} \\ $$…

Express-P-6N-060-0-in-the-form-ai-sj-where-a-and-s-are-scalers-a-3-3-i-3j-b-3-3-i-3j-c-3i-3j-d-3i-3j-

Question Number 132117 by aurpeyz last updated on 11/Feb/21 $${Express}\:{P}=\left(\mathrm{6}{N}\:\mathrm{060}^{\mathrm{0}} \right)\:{in}\:{the}\:{form} \\ $$$${ai}+{sj}\:{where}\:{a}\:{and}\:{s}\:{are}\:{scalers}. \\ $$$$\left({a}\right)\:\mathrm{3}\sqrt{\mathrm{3}}{i}+\mathrm{3}{j}\:\left({b}\right)\:\mathrm{3}\sqrt{\mathrm{3}}{i}−\mathrm{3}{j}\:\left({c}\right)\:\mathrm{3}{i}+\mathrm{3}{j} \\ $$$$\left({d}\right)\:\mathrm{3}{i}−\mathrm{3}{j} \\ $$ Commented by aurpeyz last updated on…

find-the-magnitude-and-direction-of-the-vector-r-3i-4j-to-the-nearest-degree-a-7N-143-0-b-5N-143-0-c-5N-127-0-d-7N-127-0-

Question Number 132116 by aurpeyz last updated on 11/Feb/21 $${find}\:{the}\:{magnitude}\:{and}\:{direction}\:{of} \\ $$$${the}\:{vector}\:{r}=\mathrm{3}{i}−\mathrm{4}{j}\:{to}\:{the}\:{nearest}\: \\ $$$${degree} \\ $$$$\left({a}\right)\:\mathrm{7}{N}\:\mathrm{143}^{\mathrm{0}} \:\left({b}\right)\:\mathrm{5}{N}\:\mathrm{143}^{\mathrm{0}} \:\left({c}\right)\:\mathrm{5}{N}\:\mathrm{127}^{\mathrm{0}} \\ $$$$\left({d}\right)\:\mathrm{7}{N}\:\mathrm{127}^{\mathrm{0}} \\ $$ Answered by Olaf…

arcsin-ln-3-cot4-x-4-1-19-5-

Question Number 132107 by weltr last updated on 11/Feb/21 $$\left({arcsin}\mid\mathrm{ln}^{\mathrm{3}} \left({cot}\mathrm{4}\:−\:{x}\right)\mid\:+\:\mathrm{4}!\right)^{\frac{\mathrm{1}}{\mathrm{19}}} \:=\:\mathrm{5} \\ $$ Answered by Olaf last updated on 11/Feb/21 $$\left(\mathrm{arcsin}\mid\mathrm{ln}^{\mathrm{3}} \left(\mathrm{cot4}−{x}\right)\mid+\mathrm{4}!\right)^{\frac{\mathrm{1}}{\mathrm{19}}} \:=\:\mathrm{5} \\…

x-1-6-y-1-5-11-y-1-5-x-1-6-1-1-5-Qual-e-o-par-ordenado-na-forma-a-p-e-b-q-que-satisfaz-o-sistema-como-possivel-e-determi

Question Number 66472 by hmamarques1994@gmail.com last updated on 15/Aug/19 $$\begin{cases}{\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}=\mathrm{11}}\\{\frac{\sqrt[{\sqrt{\mathrm{5}}}]{\boldsymbol{\mathrm{y}}}}{\:\sqrt[{\sqrt{\mathrm{6}}}]{\boldsymbol{\mathrm{x}}}}=\mathrm{1}\frac{\mathrm{1}}{\mathrm{5}}}\end{cases} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Qual}}\:\:\acute {\boldsymbol{\mathrm{e}}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{par}}\:\:\boldsymbol{\mathrm{ordenado}}\:\:\boldsymbol{\mathrm{na}}\:\:\boldsymbol{\mathrm{forma}}\:\:\boldsymbol{\mathrm{a}}^{\sqrt{\boldsymbol{\mathrm{p}}}} \:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{b}}^{\sqrt{\boldsymbol{\mathrm{q}}}} \\ $$$$\:\boldsymbol{\mathrm{que}}\:\:\boldsymbol{\mathrm{satisfaz}}\:\:\boldsymbol{\mathrm{o}}\:\:\boldsymbol{\mathrm{sistema}}\:\:\boldsymbol{\mathrm{como}}\:\:\boldsymbol{\mathrm{possivel}}\:\:\boldsymbol{\mathrm{e}}\:\:\boldsymbol{\mathrm{determinado}}? \\ $$ Answered by MJS last updated…

Question-132098

Question Number 132098 by rs4089 last updated on 11/Feb/21 Answered by Ar Brandon last updated on 11/Feb/21 $$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{kn}+\mathrm{k}^{\mathrm{2}} } \\ $$$$\underset{\mathrm{n}\rightarrow\infty}…

4x-5-6-4-1-x-

Question Number 1024 by brahim last updated on 19/May/15 $$\mathrm{4}{x}+\mathrm{5}=\mathrm{6}−\mathrm{4}\left(\mathrm{1}−{x}\right) \\ $$ Answered by prakash jain last updated on 19/May/15 $$\mathrm{4}{x}+\mathrm{5}=\mathrm{6}−\mathrm{4}+\mathrm{4}{x} \\ $$$$\mathrm{Equation}\:\mathrm{has}\:\mathrm{no}\:\mathrm{solution}. \\ $$…

find-the-equation-of-circle-whose-parametric-form-is-given-by-x-3cos-5-and-y-3sin-7-and-second-part-is-x-4cos-3-and-y-4sin-4-find-centre-and-radius-of-above-circle-guys-plz-ans-me-soon

Question Number 1012 by rpatle69@gmail.com last updated on 13/May/15 $${find}\:{the}\:{equation}\:{of}\:{circle}\:{whose} \\ $$$${parametric}\:{form}\:{is}\:{given}\:{by}\: \\ $$$${x}=\mathrm{3cos}\:\theta+\mathrm{5}\:{and}\:{y}=\:\mathrm{3sin}\:\theta−\mathrm{7}\:{and} \\ $$$${second}\:{part}\:{is}\:{x}=\mathrm{4cos}\:\theta−\mathrm{3}\:{and} \\ $$$${y}=\mathrm{4sin}\:\theta+\mathrm{4}.\:{find}\:{centre}\:{and}\: \\ $$$${radius}\:{of}\:{above}\:{circle}. \\ $$$$ \\ $$$$ \\…

Find-a-b-c-which-fulfill-lim-x-0-x-a-b-cos-x-c-sin-x-x-5-1-

Question Number 66544 by naka3546 last updated on 17/Aug/19 $${Find}\:\:{a},\:{b},\:{c}\:\:{which}\:\:{fulfill}\:\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{x}\left({a}\:+\:{b}\:\mathrm{cos}\:{x}\right)\:−\:{c}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }\:\:=\:\:\mathrm{1} \\ $$ Answered by Tanmay chaudhury last updated on 17/Aug/19 $$\underset{{x}\rightarrow\mathrm{0}}…