Question Number 70710 by oyemi kemewari last updated on 07/Oct/19 $$\mathrm{pleace}\:\mathrm{how}\:\mathrm{can}\:\mathrm{link}\:\mathrm{this}\: \\ $$$$\mathrm{app}\:\mathrm{to}\:\mathrm{my}\:\mathrm{telegram} \\ $$ Answered by $@ty@m123 last updated on 07/Oct/19 $${Sorry}. \\ $$$${There}\:{is}\:{no}\:{way}\:{to}\:{link}\:{any}\:{app}\:{to}\:…
Question Number 70713 by oyemi kemewari last updated on 07/Oct/19 $$\mathrm{can}\:\mathrm{i}\:\mathrm{login}\:\mathrm{to}\:\mathrm{my}\:\mathrm{account}\: \\ $$$$\mathrm{with}\:\mathrm{other}\:\mathrm{phone}?\:\mathrm{if}\:\mathrm{so}\:\mathrm{how} \\ $$ Commented by Tinku Tara last updated on 07/Oct/19 Set password and use that to login from a different phone Terms…
Question Number 136243 by Khalmohmmad last updated on 19/Mar/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}−{x}}{\mathrm{tan}{x}−{x}}=? \\ $$ Answered by EDWIN88 last updated on 20/Mar/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{1}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}} \\…
Question Number 5150 by FilupSmith last updated on 21/Apr/16 $$\mathrm{If}\:\mathrm{we}\:\mathrm{had}\:\mathrm{a}\:\mathrm{maze},\:\mathrm{which}\:\mathrm{was}\:\mathrm{contained} \\ $$$$\mathrm{within}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square},\:\mathrm{and}\:\mathrm{it}\:\mathrm{has} \\ $$$$\mathrm{one}\:\mathrm{enterence}\:\mathrm{on}\:\mathrm{its}\:\mathrm{edge},\:\mathrm{and}\:\mathrm{a}\:\mathrm{centre} \\ $$$$\mathrm{point}\:\mathrm{from}\:\mathrm{which}\:\mathrm{you}\:\mathrm{start},\:\mathrm{If}\:\mathrm{you}\:\mathrm{move} \\ $$$$\mathrm{randomly},\:\mathrm{you}\:\mathrm{will}\:\mathrm{naturally}\:\mathrm{escape}. \\ $$$$ \\ $$$$\mathrm{Now},\:\mathrm{lets}\:\mathrm{say}\:\mathrm{the}\:\mathrm{maze}\:\mathrm{itself}\:\mathrm{is}\:\mathrm{generated} \\ $$$$\mathrm{at}\:\mathrm{completely}\:\mathrm{random}\:\mathrm{odds}. \\…
Question Number 136209 by SOMEDAVONG last updated on 19/Mar/21 $$\left.\mathrm{1}\right).\int\sqrt{\mathrm{tanx}}\mathrm{dx}=? \\ $$ Answered by Ar Brandon last updated on 19/Mar/21 $$\mathrm{Q113706} \\ $$ Answered by…
Question Number 5130 by Apoorva last updated on 16/Apr/16 $$\mathrm{2}\:{to}\:{the}\:{power}\:{x}+\mathrm{2}\:{to}\:{the}\:{power}\:\left(−{x}+\mathrm{1}\right)−\mathrm{3}<\mathrm{0}.{ease}\:{ans}\:{asap} \\ $$ Commented by prakash jain last updated on 17/Apr/16 $$\mathrm{2}^{\left({x}+\mathrm{2}\right)^{\left(−{x}+\mathrm{1}\right)−\mathrm{3}} } <\mathrm{0} \\ $$$$\mathrm{If}\:{x}\in\mathbb{R}\:\mathrm{then}\:\mathrm{2}^{\left({x}+\mathrm{2}\right)^{\left(−{x}+\mathrm{1}\right)−\mathrm{3}}…
Question Number 5121 by Yozzii last updated on 15/Apr/16 $${What}\:{solutions}\:{x}\in\mathbb{R}\:{exist}\:{for}\:{the}\: \\ $$$${equation}\:\left({tan}^{−\mathrm{1}} {x}\right)\left({cot}^{−\mathrm{1}} {x}\right)={n} \\ $$$${where}\:{n}\in\mathbb{Z}? \\ $$ Answered by prakash jain last updated on…
Question Number 5122 by FilupSmith last updated on 16/Apr/16 $$\mathrm{Lets}\:\mathrm{say}\:\mathrm{person}\:\mathrm{1}\:\mathrm{punches}\:\mathrm{a}\:\mathrm{bag}\:\mathrm{and}\: \\ $$$$\mathrm{the}\:\mathrm{punch}\:\mathrm{is}\:\mathrm{fast}\:\mathrm{from}\:\mathrm{start}\:\mathrm{to}\:\mathrm{finish}. \\ $$$$ \\ $$$$\mathrm{Lets}\:\mathrm{say}\:\mathrm{person}\:\mathrm{2}\:\mathrm{does}\:\mathrm{a}\:\mathrm{punch}\:\mathrm{but} \\ $$$$\mathrm{only}\:\mathrm{the}\:\mathrm{final}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{punch}\:\mathrm{is}\:\mathrm{fast}. \\ $$$$ \\ $$$$\mathrm{How}\:\mathrm{will}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{differ}\:\mathrm{in}\:\mathrm{these}\:\mathrm{punches}? \\ $$$$ \\…
Question Number 136188 by mohammad17 last updated on 19/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 70653 by naka3546 last updated on 06/Oct/19 $$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\:\left(\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\right)^{\mathrm{tan}\:{x}} \:\:=\:\:… \\ $$ Commented by kaivan.ahmadi last updated on 06/Oct/19 $${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \left({sinx}−{cosx}−\mathrm{1}\right){tanx}= \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}}…