Menu Close

Category: None

Solve-the-following-d-e-by-using-v-dy-dx-where-v-is-a-function-of-x-x-2-d-2-y-dx-2-2-dy-dx-x-0-

Question Number 823 by 112358 last updated on 18/Mar/15 $${Solve}\:{the}\:{following}\:{d}.{e}\:{by}\:{using} \\ $$$${v}=\frac{{dy}}{{dx}},\:{where}\:{v}\:{is}\:{a}\:{function}\:{of}\:{x}. \\ $$$${x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{2}\frac{{dy}}{{dx}}+{x}=\mathrm{0} \\ $$ Answered by 123456 last updated on…

lim-n-2-n-4-n-3-2-n-3-4n-

Question Number 131885 by Study last updated on 09/Feb/21 $${lim}_{{n}\rightarrow−\infty} \frac{\mathrm{2}^{{n}} +\mathrm{4}^{{n}−\mathrm{3}} }{\mathrm{2}^{{n}−\mathrm{3}} +\mathrm{4}{n}}=? \\ $$ Commented by malwan last updated on 09/Feb/21 $$\underset{{n}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{2}^{{n}}…

log-2-x-log-3-x-1-x-

Question Number 131884 by Study last updated on 09/Feb/21 $${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:\:\:{x}=? \\ $$ Answered by EDWIN88 last updated on 09/Feb/21 $$\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{2}}\:+\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{3}}\:=\:\mathrm{1}\: \\ $$$$\:\mathrm{ln}\:\mathrm{x}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{3}}\right)=\mathrm{1} \\…

prove-that-sin-npi-0-if-n-Z-

Question Number 131879 by Study last updated on 09/Feb/21 $${prove}\:{that}\:{sin}\left({n}\pi\right)=\mathrm{0}\:\:\:{if}\:\:\:\:{n}\in\mathbb{Z} \\ $$ Answered by physicstutes last updated on 10/Feb/21 $$\mathrm{prove}\:\mathrm{for}\:{n}\:=\:\mathrm{1} \\ $$$$\mathrm{sin}\:\pi\:=\:\mathrm{0} \\ $$$$\mathrm{assume}\:\mathrm{for}\:{n}=\:{k}\:,\:{k}\:\in\mathbb{Z} \\…

what-is-the-magnitude-and-direction-in-degree-of-this-vector-F-3-10-6-i-13-35-10-6-j-a-282-5-0-b-78-5-0-c-82-5-0-d-78-5-0-e-282-5-0-

Question Number 131860 by aurpeyz last updated on 09/Feb/21 $${what}\:{is}\:{the}\:{magnitude}\:{and}\:\: \\ $$$${direction}\left({in}\:{degree}\right)\:{of}\:{this}\:{vector}? \\ $$$${F}=−\mathrm{3}×\mathrm{10}^{−\mathrm{6}} {i}−\mathrm{13}.\mathrm{35}×\mathrm{10}^{−\mathrm{6}} {j} \\ $$$$\left({a}\right)\:\mathrm{282}.\mathrm{5}^{\mathrm{0}} \:\left({b}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \:\left({c}\right)\:\mathrm{82}.\mathrm{5}^{\mathrm{0}} \:\left({d}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \\ $$$$\left({e}\right)\mathrm{282}.\mathrm{5}^{\mathrm{0}} \\ $$…