Menu Close

Category: None

A-lim-x-0-1-cos2x-2x-2-lim-x-0-2sin-2-x-2x-2-lim-x-0-sinx-x-2-1-B-lim-x-0-1-xcotx-lim-x-0-tanx-x-lim-x-0-sinx-x-1-cosx-1-

Question Number 205138 by Thokna last updated on 10/Mar/24 $${A}=\underset{{x}\rightarrow\mathrm{0}\:\:} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}^{\mathrm{2}} {x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}{x}}{{x}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${B}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}\mathrm{cot}{x}} \\…

Question-205001

Question Number 205001 by rajusasmal last updated on 05/Mar/24 Answered by TonyCWX08 last updated on 05/Mar/24 $$\mathrm{44}.\: \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$$$=\left({asec}\left(\theta\right)+{btan}\left(\theta\right)\right)^{\mathrm{2}} −\left({atan}\left(\theta\right)+{bsec}\left(\theta\right)\right)^{\mathrm{2}} \\ $$$$={a}^{\mathrm{2}}…

Question-204978

Question Number 204978 by SANOGO last updated on 04/Mar/24 Answered by witcher3 last updated on 04/Mar/24 $$\mathrm{Soit}\:\mathrm{U}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{une}\:\mathrm{suite}\:\mathrm{de}\:\mathrm{cauchy}\:\:\mathrm{Dans}\:\mathrm{C}_{\mathrm{0}} \\ $$$$\forall\mathrm{k}\:\:\mathrm{U}_{\mathrm{n}} ^{\mathrm{k}} \in\mathrm{C}_{} ^{\mathbb{N}} ;\underset{\mathrm{n}\rightarrow\infty}…

1-1-cot-3x-dx-

Question Number 204961 by naka3546 last updated on 04/Mar/24 $$\int\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:\mathrm{3}{x}}\:{dx}\:=\:\: \\ $$ Answered by TonyCWX08 last updated on 04/Mar/24 $${let}\:{t}\:=\:\mathrm{3}{x} \\ $$$${dt}\:=\:\mathrm{3}\:{dx} \\ $$$$ \\…

2-2-matrix-A-and-B-satisfy-that-AB-A-BA-B-Prove-that-A-B-2-O-

Question Number 204957 by CrispyXYZ last updated on 03/Mar/24 $$\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{satisfy}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{AB}}+\boldsymbol{\mathrm{A}}=\boldsymbol{\mathrm{BA}}+\boldsymbol{\mathrm{B}}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)^{\mathrm{2}} =\boldsymbol{\mathrm{O}}. \\ $$ Answered by Rajpurohith last updated on 04/Mar/24 $${Need}\:{not}\:{hold}\:{true}!…