Question Number 131706 by bounhome last updated on 07/Feb/21 $$\int{e}^{\mathrm{3}{x}} {cosxdx}=\:?\:{help}\:{me}\:{please}\: \\ $$ Answered by mathmax by abdo last updated on 07/Feb/21 $$\int\:\mathrm{e}^{\mathrm{3x}} \:\mathrm{cosx}\:\mathrm{dx}\:=\mathrm{Re}\left(\int\:\mathrm{e}^{\mathrm{3x}} \:\mathrm{e}^{\mathrm{ix}}…
Question Number 131685 by aurpeyz last updated on 07/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 131684 by aurpeyz last updated on 07/Feb/21 Answered by ajfour last updated on 07/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\circleddash\left(−\mathrm{2}\mu{C}\:\right)\:\:\:\:\:\:\:\:\:\:\:\oplus\left(\mathrm{10}\mu{C}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{\mid{q}_{\mathrm{3}} {q}_{\mathrm{2}} \mid}{{r}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{\mid{q}_{\mathrm{3}} {q}_{\mathrm{1}}…
Question Number 131665 by naka3546 last updated on 07/Feb/21 Answered by mr W last updated on 07/Feb/21 Commented by mr W last updated on 07/Feb/21…
Question Number 596 by 123456 last updated on 08/Feb/15 $$\int\underset{{s}} {\int}\frac{{dx}\wedge{dy}+{dx}\wedge{dz}−{dy}\wedge{dz}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$${where}\:{s}\:{is}\:{the}\:{surface}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{1}\: \\ $$ Terms of Service Privacy…
Question Number 131654 by mohammad17 last updated on 07/Feb/21 $$\underset{\mathrm{0}} {\int}^{\:\mathrm{1}/\mathrm{64}} \frac{{tan}^{−\mathrm{1}} {x}}{\:\sqrt{{x}}}{dx} \\ $$ Answered by mathmax by abdo last updated on 07/Feb/21 $$\mathrm{I}=\int_{\mathrm{0}}…
Question Number 581 by 123456 last updated on 31/Jan/15 $${z}^{\mathrm{2}} =\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta \\ $$$${z}=? \\ $$ Answered by ssahoo last updated on 31/Jan/15 $${e}^{{i}\theta} =\mathrm{cos}\:\theta\:+{i}\mathrm{sin}\:\theta={z}^{\mathrm{2}} \\…
Question Number 66098 by aliesam last updated on 09/Aug/19 Commented by Prithwish sen last updated on 09/Aug/19 $$\left(\mathrm{cosx}+\boldsymbol{\mathrm{i}}\mathrm{sinx}\right)^{\mathrm{5}} =\mathrm{cos5x}+\boldsymbol{\mathrm{i}}\mathrm{sin5x}\:=\:\mathrm{cos}^{\mathrm{5}} \mathrm{x}+\mathrm{5}\boldsymbol{\mathrm{i}}\mathrm{cos}^{\mathrm{4}} \mathrm{xsinx}−\mathrm{10cos}^{\mathrm{3}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}−\mathrm{10}\boldsymbol{\mathrm{i}}\mathrm{cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{3}} \mathrm{x}+\mathrm{5cosxsin}^{\mathrm{4}}…
Question Number 560 by 123456 last updated on 26/Jan/15 $${u}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${v}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\begin{cases}{{u}\left({x}\right){v}\left({x}\right)={x}^{\mathrm{2}} −{v}\left(−{x}\right)}\\{{u}\left(−{x}\right){v}\left({x}\right)={x}^{\mathrm{3}} +{v}\left(−{x}\right)}\end{cases} \\ $$$${h}\left({x}\right)={u}\left({x}\right){v}\left({x}\right)=? \\ $$ Answered by prakash jain last…
Question Number 131620 by mohammad17 last updated on 06/Feb/21 Answered by Dwaipayan Shikari last updated on 06/Feb/21 $$\underset{{z}\rightarrow\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{3}}} } {\mathrm{lim}}\frac{{z}^{\mathrm{3}} +\mathrm{8}}{{z}^{\mathrm{4}} +\mathrm{4}{z}^{\mathrm{2}} +\mathrm{16}}=\underset{{z}\rightarrow\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{3}}} } {\mathrm{lim}}\frac{{z}+\mathrm{2}}{{z}^{\mathrm{2}}…