Menu Close

Category: Number Theory

Given-a-b-c-is-natural-numbers-such-that-a-b-b-c-c-a-a-b-c-find-min-value-of-a-b-c-

Question Number 213663 by efronzo1 last updated on 13/Nov/24 $$\:\:\mathrm{Given}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{is}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)=\mathrm{a}+\mathrm{b}+\mathrm{c}. \\ $$$$\:\:\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}+\mathrm{b}+\mathrm{c}\: \\ $$ Answered by Ghisom last updated on 13/Nov/24 $$\mathrm{let}\:{a}<{b}<{c}\:\left(\:_{{c}<{a}<{b}\:\mathrm{possible}} ^{\mathrm{also}\:{b}<{c}<{a}\:\mathrm{or}}…

Find-the-number-of-non-zero-integer-solution-x-y-to-the-equation-15-x-2-y-3-xy-2-x-2-

Question Number 212999 by golsendro last updated on 28/Oct/24 $$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{integer}\: \\ $$$$\:\mathrm{solution}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\frac{\mathrm{15}}{\mathrm{x}^{\mathrm{2}} \mathrm{y}}\:+\:\frac{\mathrm{3}}{\mathrm{xy}}\:−\:\frac{\mathrm{2}}{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$ Answered by A5T last updated on 28/Oct/24 $$\frac{\mathrm{3}−\mathrm{2}{y}}{{xy}}=\mathrm{2}−\frac{\mathrm{15}}{{x}^{\mathrm{2}}…

If-positive-integer-x-y-gt-1-gcd-x-y-1-Positive-integer-n-satisfies-that-there-is-nononnegative-integer-a-and-b-makes-n-ax-by-If-true-what-is-the-maximum-n-

Question Number 212890 by MrGaster last updated on 26/Oct/24 $$\mathrm{If}\:\mathrm{positive}\:\mathrm{integer}\:{x}+,{y}>\mathrm{1},{gcd}\left({x},{y}\right)=\mathrm{1}, \\ $$$$\mathrm{Positive}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{satisfies}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\: \\ $$$$\mathrm{nononnegative}\:\mathrm{integer}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{makes}\:\mathrm{n}={ax}+{by}\: \\ $$$$\mathrm{If}\:\mathrm{true}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{n} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

2-m-1-1-mn-m-n-Z-

Question Number 211943 by Frix last updated on 25/Sep/24 $$\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}+{mn} \\ $$$${m},\:{n}\:\in\mathbb{Z} \\ $$ Commented by BHOOPENDRA last updated on 25/Sep/24 $$\left\{\left({m},{n}\right)\in\mathbb{Z}×\mathbb{Z}\:\mid\:{m}\:{is}\:{odd}\:\&{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\right\} \\…

Question-211635

Question Number 211635 by BaliramKumar last updated on 15/Sep/24 Answered by golsendro last updated on 15/Sep/24 $$\:\mathrm{10}^{\mathrm{31}} −\mathrm{5}−\mathrm{10}^{\mathrm{30}} −\mathrm{p}=\mathrm{10}^{\mathrm{30}} \left(\mathrm{10}−\mathrm{1}\right)−\left(\mathrm{5}+\mathrm{p}\right) \\ $$$$\:\mathrm{9}.\mathrm{10}^{\mathrm{3}} −\left(\mathrm{5}+\mathrm{p}\right)\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3} \\ $$$$\:\mathrm{so}\:\mathrm{p}=\mathrm{1}\:,\:\mathrm{4}\:,\:\mathrm{7}\:…

Question-211454

Question Number 211454 by BaliramKumar last updated on 09/Sep/24 Answered by A5T last updated on 09/Sep/24 $${Let}\:{N}={p}_{\mathrm{1}} ^{\mathrm{2}} ×{p}_{\mathrm{2}} ^{\mathrm{4}} ;{then}\:{it}\:{has}\:\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{4}+\mathrm{1}\right)=\mathrm{15}\:{divisors} \\ $$$$\Rightarrow{N}^{\mathrm{2}} ={p}_{\mathrm{1}} ^{\mathrm{4}}…