Menu Close

Category: Number Theory

1-a-m-b-m-1-ab-m-1-2-c-ab-and-c-a-1-c-b-3-If-c-is-a-common-multiple-of-a-and-b-then-a-b-c-4-ma-mb-m-a-b-for-all-int-m-gt-0-5-a-b-a-b-ab-6-Let-g-gt-0-s-be-integers-Sh

Question Number 124944 by udaythool last updated on 07/Dec/20 1.(a,m)=(b,m)=1(ab,m)=12.caband(c,a)=1cb3.Ifcisacommonmultipleofaandbthen[a,b]c4.[ma,mb]=m[a,b]forallintm>05.[a,b](a,b)=∣ab6.Letg>0,sbeintegers.Show$$\mathrm{that}\:{g}\mid{s}\:\mathrm{iff}\:\exists\:\mathrm{integers}\:{x},\:{y}\:\mathrm{such} \

Question-190285

Question Number 190285 by Abdullahrussell last updated on 31/Mar/23 Commented by ARUNG_Brandon_MBU last updated on 31/Mar/23 #include <stdio.h> int main(void) { unsigned int a, b; for (a = 100; a<1000; a++) { for (b = 300; b<1000; b++) { if (1001*a+1 == b*b) goto loopend; } } loopend: printf ("a = %u, b = %u", a, b); return 0; } Commented by ARUNG_Brandon_MBU last updated on 31/Mar/23 Output: a = 183, b = 428…

Question-190286

Question Number 190286 by Abdullahrussell last updated on 31/Mar/23 Answered by talminator2856792 last updated on 31/Mar/23 b21=1001a(b1)(b+1)=1001a(b1)(b+1)1001=a$$\:\:\frac{\left({b}\:−\:\mathrm{1}\right)\left({b}\:+\:\mathrm{1}\right)}{\mathrm{7}\:×\:\mathrm{11}\:×\:\mathrm{13}\:}\:=\:{a} \