Menu Close

Category: Number Theory

Find-all-integral-solutions-to-the-equation-x-2-1-y-2-1-2-x-y-1-xy-4-1-xy-

Question Number 120812 by bramlexs22 last updated on 03/Nov/20 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{integral}\:\mathrm{solutions}\:\mathrm{to}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{y}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{1}−\mathrm{xy}\right)=\mathrm{4}\left(\mathrm{1}+\mathrm{xy}\right) \\ $$ Answered by liberty last updated on 03/Nov/20 $$\Leftrightarrow\:\left(\mathrm{xy}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}}…

h-

Question Number 120679 by kaivan.ahmadi last updated on 02/Nov/20 $${h} \\ $$ Commented by bobhans last updated on 01/Nov/20 $$\sqrt[{\mathrm{3}}]{−\mathrm{8}}\: \\ $$$$\left(\mathrm{1}.\mathrm{0}\:+\:\mathrm{1}.\mathrm{732051i}\right) \\ $$ Commented…

A-man-has-a-wife-with-six-children-and-his-total-income-is-Gh-8500-He-was-allowed-the-following-free-tax-personal-1200-wife-300-each-child-250-for-a-maximum-of-4-dependant-rel

Question Number 120563 by rexfordattacudjoe last updated on 01/Nov/20 $${A}\:{man}\:{has}\:{a}\:{wife}\:{with}\:{six} \\ $$$${children}\:{and}\:{his}\:{total}\:{income}\:{is} \\ $$$${Gh\$}\mathrm{8500}.{He}\:{was}\:{allowed}\:{the} \\ $$$${following}\:{free}\:{tax} \\ $$$${personal}:……\$\mathrm{1200} \\ $$$${wife}:………..\$\mathrm{300} \\ $$$${each}\:{child}:…..\$\mathrm{250}\:{for}\:{a}\:{maximum}\:{of}\:\mathrm{4} \\ $$$${dependant}\:{relative}:\$\mathrm{400} \\…

Show-for-the-equation-a-n-b-2-1-where-n-gt-1-and-a-gt-2-are-any-natural-numbers-there-are-no-positive-integer-solutions-for-a-and-b-

Question Number 120202 by bemath last updated on 30/Oct/20 $${Show}\:{for}\:{the}\:{equation}\:{a}^{{n}} \:=\:{b}^{\mathrm{2}} −\mathrm{1}\: \\ $$$${where}\:{n}>\mathrm{1}\:{and}\:{a}>\mathrm{2}\:{are}\:{any}\:{natural} \\ $$$${numbers}\:,\:{there}\:{are}\:{no}\:{positive}\:{integer} \\ $$$${solutions}\:{for}\:{a}\:{and}\:{b}\:? \\ $$ Terms of Service Privacy Policy…

f-x-2-f-x-2-f-x-f-1-1-f-2-2-f-3-3-f-4-4-then-f-100-

Question Number 120049 by bramlexs22 last updated on 29/Oct/20 $$\:{f}\left({x}+\mathrm{2}\right)+{f}\left({x}−\mathrm{2}\right)={f}\left({x}\right) \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}\:,{f}\left(\mathrm{2}\right)=\mathrm{2},{f}\left(\mathrm{3}\right)=\mathrm{3},{f}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$${then}\:{f}\left(\mathrm{100}\right)=? \\ $$ Answered by bemath last updated on 29/Oct/20 $$\Rightarrow{f}\left({x}−\mathrm{2}\right)−{f}\left({x}\right)+{f}\left({x}+\mathrm{2}\right)=\mathrm{0} \\…

Given-a-1-3-3-2-3-3-3-4-3-100-Find-the-remainder-of-dividing-the-number-by-5-a-2-b-0-c-4-d-1-e-3-

Question Number 119956 by bobhans last updated on 28/Oct/20 $${Given}\:{a}\:=\:\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{3}^{\mathrm{4}} +…+\mathrm{3}^{\mathrm{100}} \\ $$$${Find}\:{the}\:{remainder}\:{of}\:{dividing}\:{the}\:{number} \\ $$$${by}\:\mathrm{5}\:. \\ $$$$\left({a}\right)\:\mathrm{2}\:\:\:\:\:\left({b}\right)\:\mathrm{0}\:\:\:\:\:\:\:\left({c}\right)\mathrm{4}\:\:\:\:\:\:\left({d}\right)\mathrm{1}\:\:\:\:\:\:\left({e}\right)\:\mathrm{3} \\ $$ Answered by talminator2856791 last…

Let-x-y-z-be-nonnegative-real-numbers-which-satisfy-x-y-z-1-Find-minimum-value-of-Q-2-x-2-y-2-z-

Question Number 119790 by bemath last updated on 27/Oct/20 $${Let}\:{x},{y},{z}\:{be}\:{nonnegative}\:{real} \\ $$$${numbers},\:{which}\:{satisfy}\:{x}+{y}+{z}=\mathrm{1} \\ $$$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$${Q}=\sqrt{\mathrm{2}−{x}}\:+\:\sqrt{\mathrm{2}−{y}}\:+\:\sqrt{\mathrm{2}−{z}}\:. \\ $$ Answered by 1549442205PVT last updated on 27/Oct/20…

Suppose-that-the-greatest-common-divisor-of-the-positive-integers-a-b-and-c-is-1-and-ab-a-b-c-Prove-that-a-b-is-a-perfect-square-

Question Number 119657 by bemath last updated on 26/Oct/20 $${Suppose}\:{that}\:{the}\:{greatest}\:{common}\:{divisor}\:{of} \\ $$$${the}\:{positive}\:{integers}\:{a},{b}\:{and}\:{c}\:{is}\:\mathrm{1}\:{and} \\ $$$$\frac{{ab}}{{a}−{b}}\:=\:{c}\:.\:{Prove}\:{that}\:{a}−{b}\:{is}\:{a} \\ $$$${perfect}\:{square} \\ $$ Commented by som(math1967) last updated on 26/Oct/20…