Question Number 115742 by bemath last updated on 28/Sep/20 $${what}\:{the}\:{cooefficient}\:{of}\:{x}^{\mathrm{10}} \:{from} \\ $$$$\left(\mathrm{1}+{x}\right)×\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)×\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{3}} \right)×…×\left(\mathrm{1}+\mathrm{2020}{x}^{\mathrm{2020}} \right) \\ $$ Answered by mr W last updated on…
Question Number 180877 by Sheshdevsahu last updated on 18/Nov/22 $$\boldsymbol{\mathrm{Q}}.\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{largest}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}}\:>\:\mathrm{1}\:\boldsymbol{\mathrm{satisfy}}. \\ $$$$\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} .\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:+\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} \:+\:\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:=\:\mathrm{5329} \\ $$ Commented by MJS_new last updated…
Question Number 180776 by Acem last updated on 17/Nov/22 $${Simplify}\:\:\sqrt{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}\:+\:\mathrm{3}}\: \\ $$$$ \\ $$ Answered by BaliramKumar last updated on 17/Nov/22 $$\sqrt{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}\:+\:\mathrm{3}\:} \\ $$$$\sqrt{\mathrm{2}\sqrt{\mathrm{2}\:}\:+\:\mathrm{3}\:} \\…
Question Number 180746 by Acem last updated on 16/Nov/22 Answered by MJS_new last updated on 16/Nov/22 $$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{200}}\right)^{\mathrm{200}} >\mathrm{2} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{know} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}\right)^{\mathrm{1}} =\mathrm{2} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}}…
Question Number 115033 by bobhans last updated on 23/Sep/20 $${If}\:{a}\:{and}\:{b}\:{positive}\:{real}\:{number}\:{where} \\ $$$${a}^{\mathrm{505}} \:+\:{b}^{\mathrm{505}} \:=\:\mathrm{1},\:{then}\:{minimum}\:{value} \\ $$$${a}^{\mathrm{2020}} \:+\:{b}^{\mathrm{2020}} \:{is}\:\_\_ \\ $$ Answered by 1549442205PVT last updated…
Question Number 180115 by universe last updated on 07/Nov/22 Answered by mr W last updated on 07/Nov/22 $$\mathrm{7}×\mathrm{6}×\mathrm{4}×\mathrm{5}×\mathrm{2}=\mathrm{1680} \\ $$$$=\mathrm{40}×\mathrm{42}=\left(\mathrm{42}−\mathrm{1}\right)\left(\mathrm{41}+\mathrm{1}\right)=\mathrm{41}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\:\left({d}\right) \\ $$…
Question Number 114401 by bemath last updated on 19/Sep/20 $${What}\:{is}\:{reminder}\:{when}\:\mathrm{4}^{\mathrm{29}} \\ $$$${divided}\:{by}\:\mathrm{17} \\ $$ Answered by bobhans last updated on 19/Sep/20 $${because}\:\mathrm{16}\:=\:\mathrm{4}^{\mathrm{2}} \equiv\:−\mathrm{1}\:\left({mod}\:\mathrm{17}\:\right) \\ $$$${we}\:{have}\:\mathrm{4}^{\mathrm{4}}…
find-four-numbers-such-that-the-sum-of-every-two-and-the-sum-of-all-four-should-be-perfect-squaresk-
Question Number 48616 by amankumar last updated on 26/Nov/18 $${find}\:{four}\:{numbers}\:{such}\:{that}\:{the}\:{sum}\:{of}\:{every}\:{two}\:{and}\:{the}\:{sum}\:{of}\:{all}\:{four}\:{should}\:{be}\:{perfect}\:{squaresk}\: \\ $$ Commented by MJS last updated on 26/Nov/18 $${a}\neq{b}\neq{c}\neq{d}? \\ $$$${a},{b},{c},{d}\:\in\mathbb{N}\:\mathrm{or}\:\in\mathbb{Z}?\:\neq\mathrm{0}? \\ $$$$\mathrm{please}\:\mathrm{make}\:\mathrm{it}\:\mathrm{clear} \\…
Question Number 114130 by bemath last updated on 17/Sep/20 Commented by mr W last updated on 17/Sep/20 $${z}=\mathrm{2}: \\ $$$$\overline {{x}\mathrm{2}}×\overline {\mathrm{4}{y}\mathrm{2}}=\mathrm{7344} \\ $$$$\left(\mathrm{10}{x}+\mathrm{2}\right)\left(\mathrm{400}+\mathrm{10}{y}+\mathrm{2}\right)=\mathrm{7344} \\…
Question Number 113221 by frc2crc last updated on 11/Sep/20 $${Does}\:{anyone}\:{know}\:{a}\:{good} \\ $$$${website}\:{for}\:{nested}\:{radicals}? \\ $$$$\sqrt[{\mathrm{6}}]{\mathrm{7}\sqrt[{\mathrm{3}}]{\mathrm{20}}−\mathrm{19}}=\sqrt[{\mathrm{3}}]{\mathrm{5}/\mathrm{3}}−\sqrt[{\mathrm{3}}]{\mathrm{2}/\mathrm{3}} \\ $$ Commented by Dwaipayan Shikari last updated on 11/Sep/20 $$\sqrt{{x}}+\sqrt{{y}}=\sqrt{\mathrm{7}+\sqrt{\mathrm{2}}}…