Question Number 207021 by efronzo1 last updated on 03/May/24 $$\:\:{If}\:\:{a}_{{n}+\mathrm{1}} =\mathrm{2}−\mathrm{5}{a}_{{n}} \:{and}\:{a}_{\mathrm{4}} =\:−\mathrm{8} \\ $$$$\:\:{prove}\:{that}\:{a}_{\mathrm{43}} −{a}_{\mathrm{30}} \:{divisible}\:{by}\:\mathrm{5} \\ $$ Commented by mr W last updated…
Question Number 206999 by efronzo1 last updated on 03/May/24 $$\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{6}^{\mathrm{20}} −\mathrm{1}\:=\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$ Commented by Frix last updated on 03/May/24 $$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}{k}} −\mathrm{1}=\mathrm{0}\left(\mathrm{mod}\left({n}+\mathrm{1}\right)\right): \\ $$$${n}^{\mathrm{2}{k}} −\mathrm{1}=\left({n}+\mathrm{1}\right)\underset{{j}=\mathrm{1}}…
Question Number 206912 by BaliramKumar last updated on 30/Apr/24 Answered by A5T last updated on 30/Apr/24 $${cos}^{\mathrm{2}} \theta+\mathrm{3}\left(\mathrm{1}−{cos}^{\mathrm{2}} \theta\right)+\mathrm{2}=\mathrm{5}−\mathrm{2}{cos}^{\mathrm{2}} \theta \\ $$$$\Rightarrow{Max}=\mathrm{5}−\mathrm{0};\:{Min}=\mathrm{5}−\mathrm{2}\Rightarrow{Difference}=\mathrm{2} \\ $$ Answered…
Question Number 205922 by cortano12 last updated on 03/Apr/24 $$\:\:\:{x}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right) \\ $$$$\:\:\:{x}=\mathrm{3}\:\left({mod}\:\mathrm{4}\right) \\ $$$$\:\:\:{x}=? \\ $$ Answered by Rasheed.Sindhi last updated on 03/Apr/24 $$\:\:\:{x}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right)\:\wedge\:{x}=\mathrm{3}\:\left({mod}\:\mathrm{4}\right) \\…
Question Number 204568 by pticantor last updated on 21/Feb/24 $$\boldsymbol{{how}}\:\boldsymbol{{to}}\:\boldsymbol{{convert}}\:\mathrm{31230}\:\boldsymbol{{in}}\:\boldsymbol{{base}}\:\mathrm{60}? \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{help}} \\ $$ Answered by A5T last updated on 22/Feb/24 $$\mathrm{31230}=\mathrm{520}×\mathrm{60}+\mathrm{30}=\left(\mathrm{8}×\mathrm{60}+\mathrm{40}\right)×\mathrm{60}+\mathrm{30} \\ $$$$=\mathrm{8}×\mathrm{60}^{\mathrm{2}} +\mathrm{40}×\mathrm{60}+\mathrm{30}=\mathrm{8}{eU}_{\mathrm{60}}…
Question Number 203509 by Fridunatjan08 last updated on 20/Jan/24 $${Find}\:{the}\:{value}\:{of}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203146 by Rasheed.Sindhi last updated on 11/Jan/24 $$\mathcal{D}{etermine}\:\overline {{ab}}\:\left({a}>{b}\right)\:{such}\:{that}\left(\:\overline {{ab}}+\overline {{ba}}\right)\: \\ $$$${and}\:\left(\overline {{ab}}−\overline {{ba}}\right)\:{are}\:{both}\:{perfect}\:{squares}. \\ $$ Answered by Frix last updated on…
Question Number 202716 by Rasheed.Sindhi last updated on 01/Jan/24 $$\overline {\:\:{abcd}\:\:}{is}\:{a}\:{four}\:{digit}\:{number} \\ $$$${such}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\overline {\:{cd}\:} \\ $$$${and}\:\overline {\:{cd}\:}−\overline {\:{d}\:}=\overline {\:{ab}\:}. \\ $$$$\mathcal{F}{ind}\:{the}\:{number}.…
Question Number 201418 by cortano12 last updated on 06/Dec/23 $$\:\:\:\:\:\:\mathrm{2025}^{\mathrm{2025}} \:=\:\mathrm{x}\:\left(\mathrm{mod}\:\mathrm{17}\:\right) \\ $$ Answered by mr W last updated on 06/Dec/23 $$\mathrm{2025}^{\mathrm{2025}} \:\left({mod}\:\mathrm{17}\right) \\ $$$$=\left(\mathrm{119}×\mathrm{17}+\mathrm{2}\right)^{\mathrm{2025}}…
Question Number 201352 by cortano12 last updated on 05/Dec/23 $$\:\:\:\mathrm{2023}^{\mathrm{2023}} \:=\:…\:\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$ Answered by Rasheed.Sindhi last updated on 05/Dec/23 $$\:\:\:\mathrm{2023}^{\mathrm{2023}} \:\equiv\:…\:\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$$$\mathrm{2023}^{\mathrm{2023}} \\…