Question Number 98091 by bobhans last updated on 11/Jun/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integral}\: \\ $$$$\mathrm{solutions}\:\mathrm{of}\:\mathrm{10xy}+\mathrm{7x}+\mathrm{3y}\:=\:\mathrm{2077829313} \\ $$ Answered by bemath last updated on 12/Jun/20 Terms of Service Privacy…
Question Number 32500 by 7991 last updated on 26/Mar/18 $${proof}:\:\left(−{a}\right)\left(−{b}\right)={ab} \\ $$ Answered by Joel578 last updated on 26/Mar/18 $$\mathrm{We}\:\mathrm{know}\:\left(−\mathrm{1}\right).\left(−\mathrm{1}\right)\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:\left(−\mathrm{1}\right)\:.\:{a}\:=\:−{a},\:\:\:{a}\:\in\:\mathbb{R}\: \\ $$$$ \\…
Question Number 32499 by 7991 last updated on 26/Mar/18 $${proof}:\:{a}\left(−{b}\right)=\left(−{a}\right){b}=−\left({ab}\right) \\ $$ Answered by $@ty@m last updated on 26/Mar/18 $${We}\:{have}: \\ $$$$\mathrm{3}×\mathrm{2}=\mathrm{6} \\ $$$$\mathrm{3}×\mathrm{1}=\mathrm{3} \\…
Question Number 163397 by kdaramaths last updated on 07/Jan/22 Commented by Rasheed.Sindhi last updated on 07/Jan/22 $$\left.\mathrm{I}.\right)\:{n}={N}=\mathrm{2975}? \\ $$ Commented by Rasheed.Sindhi last updated on…
Question Number 97823 by john santu last updated on 10/Jun/20 $$\mathrm{If}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{integers}\:,\:\mathrm{prove} \\ $$$$\mathrm{that}\:{x}^{\mathrm{3}} −\mathrm{7}{x}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\: \\ $$ Commented by bobhans last updated on 10/Jun/20 $$\mathrm{let}\:{x}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}.\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\…
Question Number 163300 by amin96 last updated on 05/Jan/22 $$\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\backsimeq\boldsymbol{{f}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{f}}\left(\mathrm{2}−\boldsymbol{{a}}\right) \\ $$$$ \\ $$For what values of a is the following formula accurate…
Question Number 97746 by bemath last updated on 09/Jun/20 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x},\mathrm{y}\right) \\ $$$$\mathrm{of}\:\mathrm{integers}\:\mathrm{satisfying}\:\mathrm{1}+\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{2x}+\mathrm{1}} =\mathrm{y}^{\mathrm{2}} \: \\ $$ Commented by john santu last updated on 09/Jun/20…
Question Number 97709 by prakash jain last updated on 09/Jun/20 Commented by prakash jain last updated on 09/Jun/20 $$\mathrm{Question}\:\mathrm{disappeared}\:\mathrm{while}\:\mathrm{typing} \\ $$$$\mathrm{answer} \\ $$$$\mathrm{Question}\:\mathrm{was} \\ $$$$\mathrm{solve}\:\mathrm{2}^{{n}}…
Question Number 163168 by kdaramaths last updated on 04/Jan/22 Commented by mr W last updated on 04/Jan/22 $${question}\:{is}\:{wrong}! \\ $$$${there}\:{is}\:{no}\:{solution}!\:{see}\:{my}\:{proof} \\ $$$${below}. \\ $$ Answered…
Question Number 97576 by Rio Michael last updated on 08/Jun/20 $$\:\mathrm{Show}\:\mathrm{that}\:{RE}\left[\frac{\mathrm{1}}{\mathrm{1}−{z}}\right]=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{where}\:{z}\:=\:\mathrm{cos}\:\theta\:+\:{i}\:\mathrm{sin}\theta \\ $$$$ \\ $$ Answered by smridha last updated on 08/Jun/20 $$\boldsymbol{{RE}}\left[\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{{e}}^{\boldsymbol{{i}\theta}} }\right]=\boldsymbol{{RE}}\left[\frac{\mathrm{1}+{e}^{{i}\boldsymbol{\theta}} }{\mathrm{1}−{e}^{\mathrm{2}{i}\boldsymbol{\theta}}…