Menu Close

Category: Number Theory

Given-that-e-i-npi-n-N-show-that-1-n-2-n-1-2-e-1-2-in-please-help-me-out-on-this-i-ve-stumbled-on-it-

Question Number 97413 by Rio Michael last updated on 08/Jun/20 $$\mathrm{Given}\:\mathrm{that}\:\omega\:=\:{e}^{{i}\theta} ,\:\theta\neq\:{n}\pi\:,\:{n}\:\in\mathbb{N} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{1}\:+\:\omega\right)^{{n}} \:=\:\mathrm{2}^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\left({in}\theta\right)} \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{out}\:\mathrm{on}\:\mathrm{this},\:\mathrm{i}'\mathrm{ve}\:\mathrm{stumbled}\:\mathrm{on}\:\mathrm{it}. \\ $$ Answered by mathmax by abdo…

Question-162674

Question Number 162674 by Mathematification last updated on 31/Dec/21 Answered by mindispower last updated on 31/Dec/21 $${d}\mid\mathrm{2}\left(\mathrm{3}{n}+\mathrm{1}\right)−\mathrm{3}\left(\mathrm{2}{n}+\mathrm{1}\right)\Rightarrow{d}\mid−\mathrm{1} \\ $$$${d}=\mathrm{1} \\ $$$${or}\:{use}\:{bizou}\:{identities} \\ $$$$−\mathrm{2}\left(\mathrm{3}{n}+\mathrm{1}\right)+\mathrm{3}\left(\mathrm{2}{n}+\mathrm{1}\right)=\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2}{n}+\mathrm{1}\right),\left(\mathrm{3}{n}+\mathrm{1}\right)\:{are}\:{prime}…

Let-a-and-b-be-an-integer-part-and-a-decimal-fraction-of-7-respectively-Then-the-integer-part-of-a-b-is-

Question Number 31579 by Joel578 last updated on 10/Mar/18 $$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{and}\:\mathrm{a}\:\mathrm{decimal} \\ $$$$\mathrm{fraction}\:\mathrm{of}\:\sqrt{\mathrm{7}},\:\mathrm{respectively}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{integer} \\ $$$$\mathrm{part}\:\mathrm{of}\:\frac{{a}}{{b}}\:\mathrm{is}? \\ $$ Answered by Tinkutara last updated on 10/Mar/18 $${a}=\mathrm{2} \\…

Let-n-be-a-positive-integer-Then-x-2-1-is-a-factor-of-x-4-3-n-x-2-3-x-2-1-n-for-A-All-n-B-Odd-n-C-Even-n-D-n-3-E-None-of-these-options-

Question Number 31125 by Joel578 last updated on 02/Mar/18 $$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{Then}\:{x}^{\mathrm{2}} \:+\:\mathrm{1}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\left({x}^{\mathrm{4}} \:+\:\mathrm{3}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} \:+\:\mathrm{3}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$\mathrm{for}\:… \\ $$$$\left(\mathrm{A}\right)\:\mathrm{All}\:{n} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{Odd}\:{n} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{Even}\:{n}…

determinant-determinant-x-y-x-2-y-2-586-x-y-x-y-Z-

Question Number 162169 by Rasheed.Sindhi last updated on 27/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\begin{array}{|c|}{\overset{\bullet} {\:\:\:\:\:\begin{array}{|c|}{\:\:\:\underset{{x}=?,{y}=?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {\overset{{x},{y}\in\mathbb{Z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {{x}+{y}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{586}}}\:\:}\\\hline\end{array}_{} ^{} }\:\:\:\:}\\\hline\end{array} \\ $$$$ \\ $$ Answered by…

Let-m-and-n-be-two-positive-integers-satisfy-m-n-1-10-12-1-12-14-1-14-16-1-2012-2014-find-the-smallest-possible-value-of-m-n-

Question Number 96558 by bobhans last updated on 02/Jun/20 $$\mathrm{Let}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{be}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{satisfy}\:\frac{\mathrm{m}}{\mathrm{n}}\:=\:\frac{\mathrm{1}}{\mathrm{10}×\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{12}×\mathrm{14}}+\frac{\mathrm{1}}{\mathrm{14}×\mathrm{16}}+…+\frac{\mathrm{1}}{\mathrm{2012}×\mathrm{2014}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{m}+\mathrm{n}\: \\ $$ Answered by john santu last updated on…

Question-96437

Question Number 96437 by bemath last updated on 01/Jun/20 Answered by bobhans last updated on 01/Jun/20 $$\boldsymbol{{xy}}−\mathrm{3}\boldsymbol{{x}}+\mathrm{5}\boldsymbol{{y}}−\mathrm{15}\:=\:−\mathrm{15} \\ $$$$\left(\boldsymbol{{x}}+\mathrm{5}\right)\left(\boldsymbol{{y}}−\mathrm{3}\right)\:=\:−\mathrm{15} \\ $$$$\left(\mathrm{1}\right)\:\boldsymbol{{x}}+\mathrm{5}\:=\:\pm\mathrm{1};\:\mathrm{y}−\mathrm{3}\:=\:\mp\mathrm{15} \\ $$$$\left(\mathrm{2}\right){x}+\mathrm{5}\:=\:\pm\:\mathrm{3}\:;\:\mathrm{y}−\mathrm{3}\:=\:\mp\:\mathrm{5}\: \\ $$$$\left(\mathrm{3}\right)\:{x}+\mathrm{5}\:=\:\pm\mathrm{5}\:;\:\mathrm{y}−\mathrm{3}\:=\:\mp\:\mathrm{3}…