Question Number 27266 by sirigidiravikumar@gmail.com last updated on 04/Jan/18 $$\mathrm{2}.\mathrm{8}.\mathrm{4}.\mathrm{7}.\mathrm{8}.\mathrm{6}.\mathrm{16}−{what}\:{next}\:{number} \\ $$$$ \\ $$ Answered by shiv15031973@gmail.com last updated on 04/Jan/18 $$.\mathrm{5}.\mathrm{32} \\ $$$${because}\:{here}\:\boldsymbol{{every}}\:\boldsymbol{{alternate}}\:\boldsymbol{{no}}.\: \\…
Question Number 158270 by Raxreedoroid last updated on 01/Nov/21 $$\mathrm{82},\mathrm{1336},\mathrm{18670},\mathrm{240004},\mathrm{2933338},\mathrm{34666672},\mathrm{400000006},? \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{valid}\:\mathrm{pattern}\:\mathrm{for}\:\mathrm{these}\:\mathrm{numbers}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 27057 by Rasheed.Sindhi last updated on 01/Jan/18 $$\mathrm{Try}\:\mathrm{to}\:\mathrm{write}\:\mathrm{new}\:\mathrm{year}\:\mathrm{number} \\ $$$$\left(\mathrm{2018}\right)\mathrm{as}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{primes} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{three}\:\mathrm{primes} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{primes} \\ $$$$\left(\mathrm{iv}\right)\mathrm{Sum}\:\mathrm{of}\:\mathrm{as}\:\mathrm{many}\:\mathrm{distinct}\:\mathrm{primes}\:\mathrm{as} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{possible}. \\ $$ Commented…
Question Number 92453 by jagoll last updated on 07/May/20 $$\sqrt[{\mathrm{i}\:\:}]{\:\mathrm{i}}\:? \\ $$ Commented by john santu last updated on 07/May/20 $${i}\:=\:{e}^{\frac{\pi{i}}{\mathrm{2}}} \:\Rightarrow\:\sqrt[{{i}\:\:}]{\:{i}}\:=\:\left({e}\right)^{\frac{\pi{i}}{\mathrm{2}}×\frac{\mathrm{1}}{{i}}} \:=\:{e}^{\frac{\pi}{\mathrm{2}}} \: \\…
Question Number 26917 by Joel578 last updated on 31/Dec/17 $$\mathrm{Given}\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:=\:\mathrm{1}\:\mathrm{and}\:{c}^{\mathrm{2}} \:+\:{d}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{ac}\:+\:{bd}\:−\:\mathrm{2}\:\mathrm{is}\:… \\ $$ Commented by prakash jain last updated on…
Question Number 157853 by emanuelMcCarthy last updated on 28/Oct/21 Commented by cortano last updated on 29/Oct/21 $$\left(\mathrm{21}\right){f}\left(\mathrm{2}\right)=−\mathrm{20}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{16}+\mathrm{4}{p}+\mathrm{16}=−\mathrm{20} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}+\mathrm{8}=−\mathrm{5}\Rightarrow{p}=−\mathrm{13} \\ $$$$\left(\mathrm{22}\right)\:{f}\left(−{a}\right)=−\mathrm{56} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{a}^{\mathrm{3}}…
Question Number 26508 by gunawan last updated on 26/Dec/17 $$\mathrm{A}=\left\{\frac{{m}}{{n}}+\frac{\mathrm{8}{n}}{{m}}\::\:{m},\:{n}\:\in\:{N}\right\},\:\mathrm{N}=\:\mathrm{Natural}\:\mathrm{numbers} \\ $$$$\mathrm{find}\:\mathrm{sup}\left(\mathrm{A}\right)\:\mathrm{and}\:\mathrm{inf}\left(\mathrm{A}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
If-GCD-a-b-1-and-GCD-c-d-1-a-b-c-d-1-a-lt-b-c-lt-d-is-it-possible-that-a-b-c-d-is-an-integer-number-
Question Number 26410 by Joel578 last updated on 25/Dec/17 $$\mathrm{If}\:\:{GCD}\left({a},{b}\right)\:=\:\mathrm{1}\:\mathrm{and}\:{GCD}\left({c},\:{d}\right)\:=\:\mathrm{1} \\ $$$${a}\:\neq\:{b}\:\neq\:{c}\:\neq\:{d}\:\neq\:\mathrm{1},\:\:{a}\:<\:{b},\:\:{c}\:<\:{d} \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{that}\:\:\frac{{a}}{{b}}\:+\:\frac{{c}}{{d}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{number}? \\ $$ Answered by mrW1 last updated on 25/Dec/17 $${since}\:{gcd}\left({c},{d}\right)=\mathrm{1},\:\frac{{c}}{{d}}\:{is}\:{already}\:{reduced} \\…
Question Number 157219 by amin96 last updated on 21/Oct/21 $$\underset{\mathrm{0}<\boldsymbol{\mathrm{n}}} {\sum}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{sinh}}\left(\pi\boldsymbol{\mathrm{n}}\right)}=\frac{\mathrm{1}}{\mathrm{4}\pi}\:\:\:\:{prove} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 91448 by Cynosure last updated on 30/Apr/20 $${prove}\:{that}\:\mathrm{1}+{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +{x}^{\mathrm{444}} \:\:{divides}\:\mathrm{1}+\:{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +…….+{x}^{\mathrm{999}} \\ $$ Commented by Cynosure last updated on…