Menu Close

Category: Number Theory

For-each-positive-integer-n-define-a-n-20-n-2-and-d-n-gcd-a-n-a-n-2-Find-the-set-of-all-values-that-are-taken-by-d-n-

Question Number 22635 by Rasheed.Sindhi last updated on 21/Oct/17 $$\mathrm{For}\:\mathrm{each}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{n},\:\mathrm{define} \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{20}+\mathrm{n}^{\mathrm{2}} ,\mathrm{and}\:\mathrm{d}_{\mathrm{n}} =\mathrm{gcd}\left(\mathrm{a}_{\mathrm{n}} ,\mathrm{a}_{\mathrm{n}+\mathrm{2}} \right). \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{values}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{taken}\:\mathrm{by}\:\mathrm{d}_{\mathrm{n}} . \\ $$$$ \\…

For-each-positive-integer-n-define-a-n-30-n-2-and-d-n-gcd-a-n-a-n-1-Find-the-set-of-all-values-that-are-taken-by-d-n-and-show-by-examples-that-each-of-these-values-are-attained-

Question Number 22625 by Rasheed.Sindhi last updated on 21/Oct/17 $$\mathrm{For}\:\mathrm{each}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{define} \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{30}+\mathrm{n}^{\mathrm{2}} ,\mathrm{and}\:\mathrm{d}_{\mathrm{n}} =\mathrm{gcd}\left(\mathrm{a}_{\mathrm{n}} ,\mathrm{a}_{\mathrm{n}+\mathrm{1}} \right). \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{values}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{taken}\:\mathrm{by}\:\mathrm{d}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{show}\:\mathrm{by}\:\mathrm{examples} \\ $$$$\mathrm{that}\:\mathrm{each}\:\mathrm{of}\:\mathrm{these}\:\mathrm{values}\:\mathrm{are}\:\mathrm{attained}. \\…

Question-88050

Question Number 88050 by Sahil vampire last updated on 08/Apr/20 Commented by mr W last updated on 08/Apr/20 $${i}\:{found}\:{there}\:{is}\:{only}\:{one}\:{such}\:{number}: \\ $$$$\mathrm{588}\:\mathrm{2353} \\ $$$$\mathrm{588}^{\mathrm{2}} +\mathrm{2353}^{\mathrm{2}} =\mathrm{588}\:\mathrm{2353}…

Given-a-set-consisting-of-22-integer-A-a-1-a-2-a-11-Show-that-exist-subset-of-S-with-properties-1-for-every-i-1-2-3-11-have-least-one-between-a-i-or-a-i-element-of-S-2-the

Question Number 153458 by liberty last updated on 07/Sep/21 $${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,…,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\…

Given-any-positive-integer-n-show-that-there-are-two-positive-rational-numbers-a-and-b-a-b-which-are-not-integers-and-which-are-such-that-a-b-a-2-b-2-a-3-b-3-a-n-b-n-are-al

Question Number 22080 by Tinkutara last updated on 10/Oct/17 $$\mathrm{Given}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integer}\:{n}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{rational} \\ $$$$\mathrm{numbers}\:{a}\:\mathrm{and}\:{b},\:{a}\:\neq\:{b},\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{integers}\:\mathrm{and}\:\mathrm{which}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that}\:{a}\:−\:{b}, \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} ,\:{a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} ,\:…..,\:{a}^{{n}} \:−\:{b}^{{n}} \:\mathrm{are}\:\mathrm{all} \\…

Suppose-N-is-an-n-digit-positive-integer-such-that-a-all-the-n-digits-are-distinct-and-b-the-sum-of-any-three-consecutive-digits-is-divisible-by-5-Prove-that-n-is-at-most-6-Further-show-that-s

Question Number 21994 by Tinkutara last updated on 08/Oct/17 $$\mathrm{Suppose}\:{N}\:\mathrm{is}\:\mathrm{an}\:{n}-\mathrm{digit}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{all}\:\mathrm{the}\:{n}-\mathrm{digits}\:\mathrm{are}\:\mathrm{distinct};\:\mathrm{and} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{any}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{digits}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:{n}\:\mathrm{is}\:\mathrm{at}\:\mathrm{most}\:\mathrm{6}.\:\mathrm{Further}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{starting}\:\mathrm{with}\:\mathrm{any}\:\mathrm{digit}\:\mathrm{one} \\ $$$$\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\mathrm{six}-\mathrm{digit}\:\mathrm{number}\:\mathrm{with}\:\mathrm{these} \\…

Let-A-be-a-set-of-16-positive-integers-with-the-property-that-the-product-of-any-two-distinct-numbers-of-A-will-not-exceed-1994-Show-that-there-are-two-numbers-a-and-b-in-A-which-are-not-relatively-p

Question Number 21962 by Tinkutara last updated on 07/Oct/17 $$\mathrm{Let}\:{A}\:\mathrm{be}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{16}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{property}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of} \\ $$$$\mathrm{any}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{numbers}\:\mathrm{of}\:{A}\:\mathrm{will} \\ $$$$\mathrm{not}\:\mathrm{exceed}\:\mathrm{1994}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are} \\ $$$$\mathrm{two}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}\:\mathrm{in}\:{A}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{relatively}\:\mathrm{prime}. \\ $$ Commented by Rasheed.Sindhi…