Question Number 11664 by Nayon last updated on 29/Mar/17 $$\mathrm{550}\boldsymbol{\div}\mathrm{11}=\mathrm{50}\:{And}\:{here}\:\mathrm{5}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} =\mathrm{50} \\ $$$${find}\:{another}\:{three}\:{digit}\:{number} \\ $$$${which}\:{is}\:{divisible}\:{by}\:\mathrm{11}\:{and}\:{the} \\ $$$${quotient}\:{is}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$$\:{square}\:{of}\:\:{the}\:{every}\:{digit}\:{of}\: \\ $$$${the}\:{dividend}. \\ $$$$…
Question Number 11606 by Joel576 last updated on 29/Mar/17 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{integer}\:{x}\:\mathrm{for} \\ $$$$\mathrm{which}\:\frac{\mathrm{1}}{\mathrm{32}}\:=\:\frac{{x}}{\mathrm{10}^{{y}} }\:\:\mathrm{for}\:\mathrm{some}\:\mathrm{positive}\:\mathrm{integer}\:{y}\:? \\ $$ Answered by mrW1 last updated on 29/Mar/17 $$\mathrm{32}{x}=\mathrm{10}^{{y}} =\left(\mathrm{2}×\mathrm{5}\right)^{{y}} =\mathrm{2}^{{y}}…
Question Number 11365 by agni5 last updated on 22/Mar/17 $$\emptyset\left(\mathrm{n}\right)=\mathrm{n}−\mathrm{1}\:,\:\mathrm{n}\in\mathrm{Z}\:,\mathrm{where}\:\emptyset\:\mathrm{is}\:\mathrm{Eular}\:\mathrm{phi}\:\mathrm{function}. \\ $$$$\mathrm{True}\:\mathrm{or}\:\mathrm{false}\:.\mathrm{And}\:\mathrm{explain}\:\mathrm{it}\:. \\ $$ Commented by bahmanfeshki1 last updated on 22/Mar/17 $${if}\:{n}\:{be}\:{prime}\:{number}\:{is}\:{true}\:{otherwise} \\ $$$${is}\:{false} \\…
Question Number 11321 by Joel576 last updated on 20/Mar/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{solution}\:\left\{{x},\:{y},\:{z}\right\}\:\mathrm{that}\:\mathrm{fulfilled} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\mathrm{99}\:? \\ $$$${x},{y},{z}\:\in\:\mathbb{N} \\ $$ Commented by prakash jain last updated on 22/Mar/17 $$\mathrm{Please}\:\mathrm{have}\:\mathrm{a}\:\mathrm{look}\:\mathrm{at}\:\mathrm{stars}\:\mathrm{and}\:\mathrm{bars}…
Question Number 142263 by Dwaipayan Shikari last updated on 28/May/21 $$\begin{pmatrix}{\mathrm{0}\:{sin}\left({x}\right)}\\{\mathrm{0}\:\:\mathrm{0}}\end{pmatrix}!+\begin{pmatrix}{\mathrm{0}\:\:{sin}\left(\mathrm{2}{x}\right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}!+\begin{pmatrix}{\mathrm{0}\:\:\:{sin}\left(\mathrm{3}{x}\right)}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}!+…\:{n}^{{th}} \:{term} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11139 by Joel576 last updated on 13/Mar/17 Commented by Joel576 last updated on 13/Mar/17 $$\mathrm{A}\:\mathrm{real}\:\mathrm{number}\:{t},\:\mathrm{so}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{three}−\mathrm{ordered}−\mathrm{pair} \\ $$$$\mathrm{solution}\:\left\{{x},\:{y},\:{z}\right\}\:\mathrm{that}\:\mathrm{fulfilled} \\ $$$${x}^{\mathrm{2}\:} \:+\:\mathrm{2}{y}^{\mathrm{2}} \:=\:\mathrm{3}{z}\:\:\:\mathrm{and}\:\:\:{x}\:+\:{y}\:+\:{z}\:=\:{t} \\ $$$$\mathrm{Find}\:{t}…
Question Number 11075 by Joel576 last updated on 10/Mar/17 $$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{75}\:\mathrm{and}\:\mathrm{has}\:\mathrm{exactly}\:\mathrm{75}\:\mathrm{positive} \\ $$$$\mathrm{integral}\:\mathrm{divisors},\:\mathrm{including}\:\mathrm{1}\:\mathrm{and}\:\mathrm{itself}. \\ $$$$\mathrm{Find}\:\frac{{n}}{\mathrm{75}} \\ $$ Commented by FilupS last updated on 11/Mar/17…
Question Number 11048 by Joel576 last updated on 09/Mar/17 $$\mathrm{Which}\:\mathrm{one}\:\mathrm{is}\:\mathrm{largest}?\:\left(\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\right) \\ $$$$\mathrm{31}^{\mathrm{11}} \:\mathrm{or}\:\mathrm{17}^{\mathrm{14}} \:\:?? \\ $$ Answered by ajfour last updated on 09/Mar/17 Answered by…
Question Number 10671 by Saham last updated on 22/Feb/17 $$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{n}\:−\:\mathrm{1}} \\ $$ Answered by FilupS last updated on 22/Feb/17 $${S}=\mathrm{5}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}−\mathrm{1}} }…
Question Number 10670 by FilupS last updated on 22/Feb/17 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{s}} =\underset{{p}\in\mathbb{P}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{p}^{−{s}} \right)^{−\mathrm{1}} \\ $$ Terms of Service Privacy Policy…