Question Number 10664 by FilupS last updated on 22/Feb/17 $${S}=\underset{\underset{{n}\geqslant\mathrm{1}} {{n}\notin\mathbb{P}}} {\overset{\infty} {\sum}}{n} \\ $$$${Q}=\underset{\underset{{n}\geqslant\mathrm{1}} {{n}\in\mathbb{P}}} {\overset{\infty} {\sum}}{n} \\ $$$$\: \\ $$$$\mathrm{Prove}\:\mathrm{if}\:\mathrm{true}: \\ $$$${S}>{Q} \\…
Question Number 10662 by FilupS last updated on 22/Feb/17 $$\mathrm{determine}\:\mathrm{if}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\frac{\mathrm{1}}{\mathrm{5}^{{s}} }+…\geqslant\frac{\mathrm{1}}{\mathrm{1}^{{s}} }+\frac{\mathrm{1}}{\mathrm{4}^{{s}} }+\frac{\mathrm{1}}{\mathrm{6}^{{s}} }+… \\ $$$$\mathrm{or}: \\ $$$$\underset{\underset{{n}\geqslant\mathrm{1}} {{n}\in\mathbb{P}}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{s}}…
Question Number 10627 by pan123 last updated on 20/Feb/17 $$\mathrm{60}^{\mathrm{15}} ×\mathrm{30}^{\mathrm{8}} ×\mathrm{35}^{\mathrm{6}} ×\mathrm{60}^{\mathrm{15}} =? \\ $$ Answered by mrW1 last updated on 20/Feb/17 $$\mathrm{60}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}×\mathrm{5}…
Question Number 141694 by Dwaipayan Shikari last updated on 22/May/21 $${log}\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{10}}\mathrm{9}{e}^{\gamma} \right)=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}}\left(\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} }{\mathrm{10}^{\mathrm{2}} }\right)−\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{3}}\:\left(\frac{\mathrm{1}^{\mathrm{3}} +\mathrm{9}^{\mathrm{3}} }{\mathrm{10}^{\mathrm{3}} }\:\right)+\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{4}}\left(\frac{\mathrm{1}^{\mathrm{4}} +\mathrm{9}^{\mathrm{4}} }{\mathrm{10}^{\mathrm{4}} }\right)−… \\ $$$$\gamma={Euler}\:{Mascheroni}\:{Constant} \\ $$…
Question Number 10577 by pan123 last updated on 19/Feb/17 $$\mathrm{5}^{\mathrm{71}} +\mathrm{5}^{\mathrm{72}} +\mathrm{5}^{\mathrm{73}} =? \\ $$ Answered by ridwan balatif last updated on 19/Feb/17 $$\mathrm{5}^{\mathrm{71}} +\mathrm{5}^{\mathrm{72}}…
Question Number 10539 by malwaan last updated on 17/Feb/17 $${prove}\:{that} \\ $$$$\sqrt{\mathrm{2}\:+\overset{\mathrm{3}} {\:}\sqrt{\mathrm{3}\:+…+\overset{\mathrm{1993}} {\:}\sqrt{\mathrm{1993}}}}\:<\mathrm{2} \\ $$ Answered by mrW1 last updated on 17/Feb/17 $${function}\:{y}=\left({x}+{a}\right)^{\frac{\mathrm{1}}{{x}}} \:{with}\:{a}>\mathrm{1}\:{is}…
Question Number 75989 by Ajao yinka last updated on 21/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 75987 by Ajao yinka last updated on 21/Dec/19 Answered by MJS last updated on 22/Dec/19 $${m}=\sqrt{{x}}\wedge{n}=\sqrt{{y}} \\ $$$${x}^{\mathrm{3}} +\left(\mathrm{375}{y}\right){x}+\left({y}^{\mathrm{3}} −\mathrm{1953125}\right)=\mathrm{0} \\ $$$$\mathrm{Cardano}\:\mathrm{with}\:{p}=\mathrm{375}{y}\wedge{q}={y}^{\mathrm{3}} −\mathrm{1953125}…
Question Number 10364 by Joel575 last updated on 05/Feb/17 $$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+\mathrm{10}+\mathrm{11}\:=\:{x}^{{y}} \\ $$$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{of}\:{x}\:\mathrm{and}\:{y}\:\mathrm{is}\:… \\ $$ Answered by mrW1 last updated on 05/Feb/17 $$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+\mathrm{10}+\mathrm{11}=\frac{\mathrm{11}×\mathrm{12}}{\mathrm{2}}=\mathrm{66} \\ $$$${x}^{{y}} =\mathrm{66}…
Question Number 75771 by Ajao yinka last updated on 16/Dec/19 Commented by mind is power last updated on 17/Dec/19 $$\tau\left(\mathrm{n}^{\mathrm{2}} \right)=\underset{\mathrm{d}\mid\mathrm{n}} {\sum}\mathrm{2}^{\omega\left(\mathrm{d}\right)} ? \\ $$…