Question Number 7249 by Rasheed Soomro last updated on 19/Aug/16 $${w},{x},{y},{z}\:{are}\:{digits}\:{in}\:{respective}\:{base}\:{system}\:{and} \\ $$$${a},{b}\:{are}\:{bases}. \\ $$$${Find}\:{out}\:{an}\:{example}/{examples}\:{which}\:{satisfy} \\ $$$${the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{wxyz}_{{a}} +{wxyz}_{{b}} ={wxyz}_{{a}+{b}} \: \\ $$ Commented…
Question Number 7230 by Yozzia last updated on 17/Aug/16 $${An}\:{Interesting}\:{App}: \\ $$$${I}'{ve}\:{recently}\:{downloaded}\:{the}\:{app}\:{called} \\ $$$$'{Math}\:{Tricks}'\:{from}\:{the}\:{Google}\:{Play}\:{Store}. \\ $$$${If}\:{you}'{d}\:{like}\:{to}\:{improve}\:{your}\:{speed} \\ $$$${and}\:{skill}\:{in}\:{the}\:{mental}\:{calculations} \\ $$$${arena},\:{I}\:{think}\:{this}\:{app}\:{should}\:{be}\:{of} \\ $$$${interest}\:{to}\:{you}.\:{The}\:{app}\:{can}\:{throw}\:{you}\:{simple} \\ $$$${calculations}\:{that}\:{include}\:{the}\:{basic}\:{operations} \\…
Question Number 7213 by Yozzia last updated on 16/Aug/16 $${Let}\:{a}\:{and}\:{b}\:{be}\:{positive}\:{integers}\:{such} \\ $$$${that}\:{ab}+\mathrm{1}\:{divides}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} .\:{Show}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}+\mathrm{1}}\:{is}\:{the}\:{square}\:{of}\:{an}\:{integer}. \\ $$$$\left({IMO}\:\mathrm{1988}\:{Qu}.\mathrm{6}\right) \\ $$ Terms of Service…
Question Number 7191 by Tawakalitu. last updated on 15/Aug/16 $${Evaluate}\:\:\:\:\:\Sigma\:\frac{{sin}\left(\mathrm{3}{n}\right)}{{n}}\:\:\:\:\:{from}\:\:\mathrm{1}\:\:{to}\:\:{infinity}\: \\ $$ Answered by Yozzia last updated on 15/Aug/16 $${Define}\:{the}\:{function}\: \\ $$$${f}\left({x}\right)={x}\:{for}\:\mathrm{0}<{x}<\mathrm{1}\:,\:{period}=\mathrm{2}. \\ $$$${For}\:{Fourier}\:{series}\:{of}\:{f}\:{having}\:{the}\:{form} \\…
Question Number 7189 by Tawakalitu. last updated on 15/Aug/16 $${Evaluate}\:\:\::\:\:\:\Sigma\:\frac{{sin}\left({n}\right)}{{n}}\:\:,\:\:\:{From}\:\:\:\mathrm{1}\:{to}\:\:{infinity}. \\ $$ Commented by Yozzia last updated on 15/Aug/16 $${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{{a}_{{n}} {cos}\frac{{n}\pi{x}}{{L}}+{b}_{{n}} {sin}\frac{{n}\pi{x}}{{L}}\right\}…
Question Number 7005 by Tawakalitu. last updated on 05/Aug/16 $${Is}\:\:{u}_{{n}} \:{real}\:{sequence}\:{defende}\:\:{by}\:\: \\ $$$${u}_{\mathrm{0}} \:=\:\mathrm{3}{e}^{{t}} \:{u}_{{n}+\mathrm{1}} \:=\:\mathrm{2}\left({u}_{{n}} \right)^{\mathrm{2}} \:−\:\mathrm{1} \\ $$$${Determine}\:{the}\:{general}\:{term}\:{u}_{{n}} \:{of}\:{this}\:{series}\: \\ $$$$\left({justify}\:{your}\:{answer}\:{and}\:{method}\:{used}\right) \\ $$$$…
Question Number 138003 by benjo_mathlover last updated on 09/Apr/21 Answered by EDWIN88 last updated on 09/Apr/21 $${begin}\:{from}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}\:=\:{e}^{{x}} −\mathrm{1}\:.\:{Taking}\:{derivative} \\ $$$$\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}−\mathrm{1}}…
Question Number 137635 by Dwaipayan Shikari last updated on 04/Apr/21 Commented by Dwaipayan Shikari last updated on 04/Apr/21 $${A}\:{friend}\:{of}\:{mine}\:{sent}\:{me}\:{this}.\:{I}\:{am}\:{posting}\:{this}\:{behalf}\:{of} \\ $$$${him} \\ $$ Terms of…
Question Number 137585 by bramlexs22 last updated on 04/Apr/21 $${Find}\:{the}\:{cube}\:{of}\:{the}\:{number}\: \\ $$$${N}=\:\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}\sqrt{\mathrm{7}\sqrt{\mathrm{3}…}}}}}}}} \\ $$ Answered by bemath last updated on 04/Apr/21 $${N}=\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{128}}+…} .\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{64}}+…} \\ $$$${N}=\mathrm{7}^{\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}−\mathrm{1}/\mathrm{4}}}…
Question Number 137579 by liberty last updated on 04/Apr/21 $$\left(−\mathrm{1}\right)×\frac{\mathrm{1}}{\pi.{i}}\:=?\: \\ $$ Answered by Engr_Jidda last updated on 04/Apr/21 $$\left(−\mathrm{1}\right)×\frac{\mathrm{1}}{\pi{i}}=\:{i}^{\mathrm{2}} \frac{\mathrm{1}}{\pi{i}}=\frac{{i}}{\pi} \\ $$ Terms of…