Menu Close

Category: Number Theory

Question-133757

Question Number 133757 by liberty last updated on 24/Feb/21 Answered by bobhans last updated on 24/Feb/21 $${Let}\:{x}\:{be}\:{the}\:{least}\:{number}\:{of}\:{marbles} \\ $$$${in}\:{the}\:{box}\:,\:{such}\:{that}\:\begin{cases}{{x}\equiv\mathrm{5}\:\left({mod}\:\mathrm{7}\right)}\\{{x}\equiv\mathrm{6}\:\left({mod}\:\mathrm{11}\right)}\\{{x}\equiv\:\mathrm{8}\:\left({mod}\:\mathrm{13}\right)}\end{cases} \\ $$$${We}\:{can}\:{use}\:{Chinese}\:{remainder}\:{theorem} \\ $$$${a}_{\mathrm{1}} =\mathrm{5}\:;\:{a}_{\mathrm{2}} =\mathrm{6}\:;\:{a}_{\mathrm{3}}…

You-have-a-3-litre-jug-and-a-5-litre-jug-Make-4-litres-

Question Number 2603 by Yozzis last updated on 23/Nov/15 $${You}\:{have}\:{a}\:\mathrm{3}\:{litre}\:{jug}\:{and}\:{a}\:\mathrm{5}\:{litre}\:{jug}.\:{Make}\:\mathrm{4}\:{litres}. \\ $$ Answered by RasheedAhmad last updated on 23/Nov/15 $$\mathrm{2}×\left(\mathrm{5}\:{litre}\:{jug}\right)−\mathrm{2}×\left(\mathrm{3}\:{litre}\:{jug}\right) \\ $$$$=\mathrm{4}\:{litres} \\ $$ Commented…

Given-system-of-equation-2x-3y-13-3x-2y-b-where-l-b-100-and-b-is-integer-Suppose-n-2-x-y-where-x-y-is-solution-of-given-system-of-equation-find-the-value-of-n-for-n-is-i

Question Number 133611 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{Given}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\mathrm{2x}−\mathrm{3y}\:=\:\mathrm{13}}\\{\mathrm{3x}+\mathrm{2y}\:=\:\mathrm{b}}\end{cases}\:,\:\mathrm{where}\:\mathrm{l}\:\leqslant\:\mathrm{b}\leqslant\:\mathrm{100}\:\mathrm{and} \\ $$$$\mathrm{b}\:\mathrm{is}\:\mathrm{integer}.\:\mathrm{Suppose}\:\mathrm{n}^{\mathrm{2}} \:=\:\mathrm{x}+\mathrm{y}\:\mathrm{where} \\ $$$$\mathrm{x},\mathrm{y}\:\mathrm{is}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{given}\:\mathrm{system}\: \\ $$$$\mathrm{of}\:\mathrm{equation}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n} \\ $$$$\mathrm{for}\:\mathrm{n}\:\mathrm{is}\:\mathrm{integer}\: \\ $$ Answered by…

What-is-the-sum-of-digits-of-3333-4444-Say-sum-of-all-digits-of-3333-4444-is-A-If-A-gt-10-then-sum-all-digits-of-A-This-process-is-repeated-until-a-single-digits-sum-x-in-obtained-x-

Question Number 2432 by prakash jain last updated on 19/Nov/15 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{3333}^{\mathrm{4444}} , \\ $$$$\mathrm{Say}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{3333}^{\mathrm{4444}} \:\mathrm{is}\:\mathrm{A}, \\ $$$$\mathrm{If}\:\mathrm{A}>\mathrm{10}\:\mathrm{then}\:\mathrm{sum}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{A}. \\ $$$$\mathrm{This}\:\mathrm{process}\:\mathrm{is}\:\mathrm{repeated}\:\mathrm{until}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{digits}\:\mathrm{sum}\:{x}\:\mathrm{in}\:\mathrm{obtained}. \\ $$$${x}=? \\ $$…

How-many-0s-at-the-end-of-1000-What-is-the-first-non-zero-digits-from-the-right-

Question Number 2387 by prakash jain last updated on 18/Nov/15 $$\mathrm{How}\:\mathrm{many}\:\mathrm{0}{s}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{1000}!? \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{first}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{digits}\:\mathrm{from}\:\mathrm{the}\:\mathrm{right}? \\ $$ Commented by prakash jain last updated on 18/Nov/15 $$\mathrm{Number}\:\mathrm{of}\:\mathrm{zero}\:\mathrm{can}\:\mathrm{be}\:\mathrm{computed}\:\mathrm{using} \\…

Of-the-numbers-1-2-3-6000-how-many-are-not-multiples-of-2-3-or-5-

Question Number 2381 by Yozzi last updated on 18/Nov/15 $${Of}\:{the}\:{numbers}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:…\:,\:\mathrm{6000}, \\ $$$${how}\:{many}\:{are}\:{not}\:{multiples}\:{of}\:\mathrm{2},\:\mathrm{3}\:{or}\:\mathrm{5}? \\ $$ Commented by 123456 last updated on 18/Nov/15 $$\mathrm{N}=\mathrm{N}_{\mathrm{2}} +\mathrm{N}_{\mathrm{3}} +\mathrm{N}_{\mathrm{5}} −\mathrm{N}_{\mathrm{2},\mathrm{3}}…

What-are-the-last-two-digits-of-2-222-1-

Question Number 133412 by EDWIN88 last updated on 22/Feb/21 $$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2}^{\mathrm{222}} −\mathrm{1}\:? \\ $$ Answered by liberty last updated on 22/Feb/21 $$\mathrm{2}^{\mathrm{10}} =\mathrm{1024}\equiv\mathrm{24}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{20}} \equiv\mathrm{24}^{\mathrm{2}}…