Menu Close

Category: Number Theory

Give-the-result-of-the-following-computation-as-an-integer-in-the-usual-decimal-form-303-000-000-000-303-3-300-000-033-1-000-100-010-001-

Question Number 518 by Yugi last updated on 25/Jan/15 $${Give}\:{the}\:{result}\:{of}\:{the}\:{following}\:{computation}\:{as}\:{an}\:{integer}\:{in}\:{the}\:{usual}\:{decimal} \\ $$$${form}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{303},\mathrm{000},\mathrm{000},\mathrm{000},\mathrm{303}×\mathrm{3},\mathrm{300},\mathrm{000},\mathrm{033}}{\mathrm{1},\mathrm{000},\mathrm{100},\mathrm{010},\mathrm{001}} \\ $$ Answered by prakash jain last updated on 22/Jan/15 $$\frac{\mathrm{303}\left(\mathrm{10}^{\mathrm{12}}…

What-is-the-greatest-common-divisor-of-the-2010-digit-and-2005-digit-numbers-below-222-222-2010-of-twos-777-777-2005-of-sevens-

Question Number 513 by 112358 last updated on 25/Jan/15 $${What}\:{is}\:{the}\:{greatest}\:{common} \\ $$$${divisor}\:{of}\:{the}\:\mathrm{2010}\:{digit}\:{and}\:\mathrm{2005}\:{digit} \\ $$$${numbers}\:{below}? \\ $$$$\mathrm{222}…\mathrm{222}\:\left(\mathrm{2010}\:{of}\:{twos}\right) \\ $$$$\mathrm{777}…\mathrm{777}\:\left(\mathrm{2005}\:{of}\:{sevens}\right) \\ $$ Answered by prakash jain last…

proof-or-given-a-counter-example-if-n-N-n-gt-1-exist-a-number-k-N-k-0-n-such-that-n-k-is-prime-

Question Number 503 by 123456 last updated on 20/Jan/15 $${proof}\:{or}\:{given}\:{a}\:{counter}−{example}: \\ $$$${if}\:{n}\in\mathbb{N},{n}>\mathrm{1},\:{exist}\:{a}\:{number}\:{k}\in\mathbb{N} \\ $$$${k}\in\left(\mathrm{0},{n}\right]\:{such}\:{that}\:{n}+{k}\:{is}\:{prime}. \\ $$ Commented by prakash jain last updated on 20/Jan/15 $$\mathrm{Bertrand}'\mathrm{s}\:\mathrm{theorem}\:\mathrm{states}\:\mathrm{that}\:…

Prove-or-disprove-that-minimum-value-of-n-which-satisfies-the-equation-10-n-1-mod-7-p-is-n-6-7-p-1-

Question Number 443 by prakash jain last updated on 04/Jan/15 $$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}\:\mathrm{that}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:{n}\:\mathrm{which}\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{10}^{{n}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}^{{p}} \right)\:\mathrm{is}\:{n}=\mathrm{6}×\mathrm{7}^{{p}−\mathrm{1}} . \\ $$ Commented by 123456 last updated…