Menu Close

Category: Number Theory

Find-the-value-of-ln-i-ln-3-4i-

Question Number 132386 by liberty last updated on 13/Feb/21 $$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\begin{cases}{\mathrm{ln}\:{i}}\\{\mathrm{ln}\:\left(\mathrm{3}+\mathrm{4}{i}\right)}\end{cases} \\ $$ Answered by EDWIN88 last updated on 13/Feb/21 $$\left(\mathrm{1}\right)\mathrm{ln}\:{i}\:=\:\mathrm{ln}\:\mid{i}\mid\:+{i}\:\left(\mathrm{arg}\:\left({i}\right)+\mathrm{2}{n}\pi\right)=\mathrm{ln}\:\mathrm{1}+{i}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{2n}\pi\right) \\ $$$$\left(\mathrm{2}\right)\mathrm{ln}\:\left(\mathrm{3}+\mathrm{4}{i}\right)=\mathrm{ln}\:\mid\mathrm{3}+\mathrm{4}{i}\mid=\mathrm{ln}\:\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }\:+{i}\left(\mathrm{arctan}\:\left(\frac{\mathrm{4}}{\mathrm{3}}\right)+\mathrm{2}{n}\pi\right) \\…

Determine-the-general-solution-of-the-following-linear-diophantine-equation-for-N-Z-m-Z-8N-81m-65-

Question Number 1156 by 112358 last updated on 06/Jul/15 $${Determine}\:{the}\:{general}\:{solution} \\ $$$${of}\:{the}\:{following}\:\:{linear}\:{diophantine} \\ $$$${equation}\:{for}\:\forall{N}\in\mathbb{Z}^{+} ,{m}\in\mathbb{Z}^{+} : \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{8}{N}=\mathrm{81}{m}+\mathrm{65}\:. \\ $$ Commented by prakash…

Prove-that-if-two-numbers-are-chosen-at-random-then-the-probability-that-their-sum-is-divisible-by-n-is-1-n-

Question Number 785 by rishabh last updated on 12/Mar/15 $${Prove}\:{that}\:{if}\:{two}\:{numbers}\:{are}\:{chosen} \\ $$$${at}\:{random}\:{then}\:{the}\:{probability}\:{that} \\ $$$${their}\:{sum}\:{is}\:{divisible}\:{by}\:{n}\:{is}\:\frac{\mathrm{1}}{{n}}. \\ $$ Answered by prakash jain last updated on 12/Mar/15 $$\mathrm{Sum}\:\mathrm{mod}\:{n}={k},\:\mathrm{where}\:\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1}.…

List-all-primes-p-for-which-p-2-and-p-4-are-also-primes-

Question Number 765 by prakash jain last updated on 09/Mar/15 $$\mathrm{List}\:\mathrm{all}\:\mathrm{primes}\:{p}\:\mathrm{for}\:\mathrm{which}\:{p}+\mathrm{2}\:\mathrm{and}\:{p}+\mathrm{4} \\ $$$$\mathrm{are}\:\mathrm{also}\:\mathrm{primes}. \\ $$ Answered by rishabh last updated on 09/Mar/15 $${p}=\mathrm{3}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only}\:\mathrm{such}\:\mathrm{number}. \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{assume}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:{p}>\mathrm{3}.…

Prove-that-for-p-q-r-N-lcm-p-q-r-gcd-p-q-r-p-q-r-gcd-p-q-gcd-q-r-gcd-r-p-

Question Number 66275 by Rasheed.Sindhi last updated on 12/Aug/19 $${Prove}\:{that}\:{for}\:{p},{q},{r}\in\mathbb{N} \\ $$$$\frac{\mathrm{lcm}\left({p},{q},{r}\right)}{\mathrm{gcd}\left({p},{q},{r}\right)}=\frac{{p}×{q}×{r}}{\mathrm{gcd}\left({p},{q}\right)×\mathrm{gcd}\left({q},{r}\right)×\mathrm{gcd}\left({r},{p}\right)} \\ $$ Commented by Prithwish sen last updated on 12/Aug/19 $$\mathrm{p}=\mathrm{nn}_{\mathrm{1}} \mathrm{n}_{\mathrm{2}} \mathrm{x},\mathrm{q}=\mathrm{nn}_{\mathrm{2}}…